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Abstract: Nondestructive estimation of the biophysical properties of crops provide quick and real time information of crop 

health under wide range of environment.  The chlorophyll content is an important indicator of crop health and widely used for 

determination of nutritional status of the crops real time in precision agriculture.  Advancement in the low altitude remote 

sensing (LARS) technologies such as Unmanned Aerial vehicles (UAVs) provides high temporal and spatial resolution solution 

for nondestructive, rapid and accurate estimation of biophysical properties of various crops.  The main objective of this study 

was to evaluate the high resolution multispectral UAV images for nondestructive and real time estimation of the kinnow tree 

leaves chlorophyll content in district Sargodha, Pakistan.  Kinnow tree leaves chlorophyll contents were measured manually 

using chlorophyll meter (SPAD-502 Minolta) in the kinnow orchard along with GPS positions in district Sargodha.  The 

UAVs images were also acquired during the same time when ground-truthing campaign for kinnow leaves chlorophyll content 

was performed. Vegetation indices including Normalized Difference Vegetation Index (NDVI), Transformed Normalized 

Difference Vegetation Index (TNDVI), Modified Chlorophyll Absorbed Ratio Index (MCARI2), Soil adjusted vegetation Index 

(SAVI) and Modified soil adjusted vegetation index (MSAVI2) were derived by multispectral UAV images for chlorophyll 

estimation.  The regression analysis was performed between ground-truthing data of chlorophyll content and UAV derived 

vegetation indices for predicting kinnow leave chlorophyll content model. MSAVI2 and TNDVI were proved to be more robust 

indices to estimate the chlorophyll content in the kinnow orchard with the highest coefficients of determination (R2) 0.89 and 

0.85 respectively.  The results showed that the multispectral UAV can be used for accurately estimation of chlorophyll content 

and assess crop health status in a wider range which will help in managing crop nutrition requirement in real time in the kinnow 

orchard. 
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1  Introduction  

In plants, chlorophyll is the most important pigment for 

photosynthesis (Yuan et al., 2007).  Chlorophyll converts solar 

energy into chemical energy, so it was reported that chlorophyll 

contents are directly correlated with crop growth and yield.  Few 

studies showed that leaf nitrogen content is positively correlated 

with chlorophyll content.  Therefore, estimation of chlorophyll 
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2000).   

Conventional way for pigmentation analysis including 

spectrophotometer, destruction of leaves or high performance 

liquid chromatography (HPLC), and therefore cannot measure 

changes in pigmentation of individual leaves over time.  In 

addition, these technologies are time-consuming and expensive, so 

it is impractical to assess the health status of the crops.  Therefore, 

accurate, efficient, and practical methods are needed to estimate 

this biophysical parameter.  

The use of Precision Agriculture (PA) technologies is 

considered one of the key components in modern agricultural 

development for improving the crop production at farm level.  

Some of the perceived benefits of PA include increasing crop yield 

and efficiency by lowering the costs associated with fertilizer, 

pesticides, herbicides, and fungicides.  An additional 

socio-economic benefit of PA is reducing the transport of 

agriculture inputs on the air, soil and water.  

A variety of highly resolution satellite data (IKONOS, 

QuickBird, GeoEye-1 and WorldView-2) [6-16] is available but 

their satellites’ poor temporal resolution still a barrier to fully 

utilized this system efficiently.  In addition, the costs and 

availability of high resolution satellite imagery often limit their 

applications in PA (Wu et al. 2007).  Consequently, Unmanned 

Aerial Vehicles (UAVs), which are more manoeuvrable, cheaper to 

operate, and require less capital costs, may serve to address this 

need.  Unmanned Aerial System (UAS) could be an inexpensive 

and more practical substitute for satellite and general aviation 

aircraft for high resolution remotely sensed data.  Moreover, UAS 

are immediately accessible as a tool for remote sensing scientists 

and farmers (Swain et al. 2010).  In recent years, small 

commercial UAS (<50 kg) (Laliberte and Rango 2011) have been 

available for environmental and agricultural applications.  

Furthermore, the rapid development of Low Altitude Remote 

Sensing Systems (LARS) over the past decade makes its 

application for PA possible. 

A wide variety of UAVs are, using extensively in military and 

civilian applications (Blyenburgh, 1999).  Applications include 

archaeological prospecting (Eisenbeiss, 2004), rangeland 

management (Hardin and Jackson, 2005), assessment of grain crop 

attributes (Jensen et al., 2003; Hunt et al., 2005), and vineyard 

management (Johnson et al., 2001).  In agriculture, UAVs have 

been used for pest control and remote sensing (Huang et al. 2009).  

Moreover, UAS are immediately accessible as a tool for remote 

sensing scientists and farmers (Swain et al. 2010).  These system 

still did not completely meet the requirement for real time 

monitoring crop health status due to clouds, aerosols, water 

vaporous and most important spatial and temporal resolution still a 

barrier to fully utilized this system efficiently.   

Leaf-reflection based non-destructive techniques, a robust and 

simple method have been proposed as an alternative to pigment 

quantification in leaves (Richardson et al., 2002; Sims & Gamon, 

2002; Gitelson et al., 2003; Hu et al., 2004; Le Maire et al., 2004) 

                                                 
simulation modeling and remote sensing, Email: drmuhammadafzal100 

@gmail.com; Muhammad Jehanzeb Masud Cheema, PhD, Agricultural 

Engineer, research interest: precision agriculture, Email: mjm.cheema@ 

uaf.edu.pk; Shahid Amir, PhD scholar, research interest: remote sensing and 

GIS, Email: spacian718@gmail.com. 

*Corresponding author: Muhammad Naveed Tahir, PhD, Assistant Professor, 

Research Interest: Remote sensing and Precision Agriculture. Department of 

Agronomy, PMAS-Arid Agriculture University. Rawalpindi, 46300, Pakistan. 

Email: naveed@uaar.edu.pk. 

and in canopies (Barton, 2001; Gitelson et al., 2005).  Efforts has 

been made to develop relationship between leaf chlorophyll and 

plant reflectance (Tahir et al. 2013).  But to represent chlorophyll 

content at canopy level are still uncertainties.  There is need to 

accurate, rapid, and practical methods to estimate chlorophyll 

content per unit ground canopy in the kinnow orchards.  The main 

objectives of this study was to real time estimation of the kinnow 

tree leaves chlorophyll content base on vegetation indices derived 

from multispectral UAVs and compared with the ground-truthing 

chlorophyll contents measured using SPAD chlorophyll meter for 

developing prediction model of leaf chlorophyll contents in real time. 

2  Material and methods 

2.1  Study area and ground-truthing data of chlorophyll 

content measurement 

The current study was conducted at Kotmomin, district 

Sargodha, having latitude 32°01'00'' North and longitude 73°02'30'' 

East (Figure 1).  Being a largest producer of the kinnow, it is 11th 

biggest city of Pakistan and 6th of Punjab, occupying 5,864 km2 

area and 2,665,979 population of which only 28% lived in urban 

area according to 1998 Pakistan census.  In summer the 

temperature rises up to 50 °C while in winter it drops below the 

freezing point.  Most common crops cultivated in the district are 

the kinnow, wheat, rice, and sugarcane which are exported 

nationally and internationally. 
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Figure 1  Study location map 

 

Generally, the citrus orchards in Pakistan contain 100 trees per 

acre, separated by 6 meter from each other with average height of 

4-5 meters and diameter of 3-7 meters.  Ideally during the season 

(yearly) citrus field is irrigated 4-5 times and fertilized 2 times.  

The Kotmomin has been blessed a variety of soils from sandy to 

clay, hence there are some micro climatic zones. 

The field visit was performed in April 26, 2018 to collect the 

kinnow tree leaves chlorophyll content data by using chlorophyll 

meter (SPAD-502 Minolta) for in situ measurement of the kinnow 

leaves chlorophyll contents from 46 trees randomly (Figure 2).  

Seven different leaves at different points on one kinnow plant were 

selected for chlorophyll content measurement and then took the 

averaged value of them.  The sample locations were geo-located 

by using GPS meter.  General information like tree height, age, 

average yield, previous status, and nutrient applications has also 

been obtained by interviewing by the farmers.   

 
Figure 2  Point data map of chlorophyll content measurement by 

SPAD-502 chlorophyll meter at Kotmomim in the kinnow orchard 

 

2.2  UAVs system and flight data acquiring 

The eBee Agdesigned as a fixed wing UAVs for application in 

precision agriculture has a payload of 150 g.  This UAVs was 

equipped with MultiSpec 4C camera developed by Airinov 

(Airinov, 75018 Paris, France, www.airinov.fr/en/uav-sensor/ 

agrosensor/) and customized for the eBee Ag.  It contains four 

distinct bands with no spectral overlap (530-810 nm): green, red, 

red-edge, and near infrared bands, and is controlled by the eBee Ag 

autopilot during the flight (Table 1).  The eBee MultiSpec 4C 

camera had a predefined setting by Sensefly; ISO and shutter speed 

was set to automatic, maximum aperture was set to f/1.8 and focal 

distance was fixed at 4 mm. 
 

Table 1  eBee Ag Sensor Specification 

Sensor 
Platform 

(UAVs) 

Sensor 

resolution 

/MP 

Focal 

length 

/mm 

Full width at half 

maximum (FWHM) 

Peak 

wavelength 

MultiSpec 

4C 
eBee Ag 

1.2 (four 

sensors) 
3.6 

Green: 530-570 

Red: 640-680 

Red edge: 730-740 

NIR: 770-810 

Green: 550 

Red: 660 

Red edge: 735 

NIR: 790 
 

2.3  Reflectance calibration panel 

For radiometric calibration, spectra of easily recognizable 

objects (e.g. gray scale calibration board) are needed. A 

black–gray–white grayscale board with known reflectance values 

was built and placed in the field during flights for further image 

calibration. This grayscale calibration panel met the requirements 

for further radiometric calibration including (1) the panel was 

spectrally homogenous, (2) it was near Lambertian and horizontal, 

(3) it covered an area many times larger than the pixel size of the 

Canon S100, and (4) covered a range of reflectance values [25]. 

The flights were carried out at kotmomin in district Sargodha 

on April 26, 2018 in the kinnow orchard with eBee UAS (senseFly, 

Switzerland).  All flights were carried out in stable ambient light 
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conditions from 12:00 pm to 2:00 pm, with excellent visibility and 

a wind below 5 m/s, at flight altitude of 41 m (above ground level).  

The imaged area of the kinnow field, including the surroundings, is 

about 11hactare.  The time needed for a single flight of the UAS 

imaging was 12 minutes.  At the time of images, two flights were 

carried out, the first one by a Canon Powershot S110 photo camera 

(visible spectrum, RGB-red/green/blue) for visible RGB image 

(orthophoto) to run a rapid analysis for visual orchard variability.  

A second fly with a Canon Powershot S110 NIR camera (near 

infra-red [NIR], near infra-red/green/blue) that provides the 

maximum absorption peaks at 550 nm (green), 625 nm (red) and 

850 nm (NIR) wavelengths respectively, allowing the computation 

of Vis both in the visible and near infrared.  The technical features 

of the S110 RGB or the S110 NIR involve resolution of 12 million 

pixels, a weight of 0.7 kg, sensor size of 7.44×5.58 mm2, pixel 

pitch of 1.33 μm and image format in RAW and JPEG.  In fact, 

the image data consisting of the above four bands were acquired 

twice by UAS imaging. S110 RGB acquired the true-color image 

data in single UAS imaging; another UAS imaging with the S110 

NIR acquired the false-color image data that consists of the red 

(570-690 nm), green (510-660 nm) and NIR (780-1000 nm) bands 

and is therefore able to capture the amount of NIR radiation a 

surface reflects (Table 2).  This is especially useful to calculate 

indices like the NDVI, SAVI, MCARI as reported by Joseph 

(2005). 

 

Table 2  Flight information using eBee Ag (fixed wing) UAVs on April 26, 2018 at Kotmomin, Sargodha. 

Camera Platform (UAS) Flight speed/m·s-1 Altitude/m 

Percent overlap 

No. of images Image format Spatial resolution/cm 

Side/% Forward/% 

MultiSpec 4C eBee Ag 8 41 75 75 22 8 bit TIFF 5 

 

To avoid geometric distortion due to low altitude, 22 

overlapping pictures from each camera and fly were used for 

mosaicking to produce an ortho-image.  The 75% frontal overlap 

and 75% side overlap were used as suggested by Gómez-Candón, 

De Castro, and López- Granados (2014).  The flight plans were 

performed on the eMotion® software.In order to orient and relate 

UAS imagery to the ground, 46 ground control points (GCPs) were 

distributed across the kinnow field to obtain photogrammetric 

imagery with uniform horizontal and vertical accuracy.  The 

GCPs were 25 cm×25 cm square, with a specific albedo for camera 

calibration, mounted on a 50-cm post.  

2.4  UAVs data processing  

For each flight, images were georeferenced and elaborated 

using the Pix4D manager tool of the eMotion software.  The 

eBee’s supplied software to build a project using the drone’s 

geotagged images.  To create an accurately georeferenced 

ortho-mosaicked image of the kinnow field, the multiple 

overlapped images were stitched together and ortho-rectified.  In 

the laboratory, data processing (ortho-mosaicking) of acquired 

images was performed with Pix4D software package, to generate 

ortho-images.  Pix4D incorporates scale-invariant feature 

transform algorithm to match key points across multiple images 

(Küng et al., 2011; Lowe, 2004) and processes data in three key 

steps: (1) initial processing (camera internals and externals, 

automated aerial triangulation, bundle block adjustment); (2) point 

cloud densification; and (3) (digital surface map [DSM]) and 

ortho-mosaic generation.  The exterior position and orientation 

parameters of the UAS, referring to the roll, pitch and yaw angles 

of every overlapped image, were provided by the UAS inertial 

system.  These parameters were used as input data to the Pix4D 

software for ortho-rectification by aero-triangulation and 

mosaicking.  Aero-triangulation involves the transformation of 

image coordinates to ground coordinates through a set of GCPs that 

are clearly visible in the set of images.  This step consists of 

forcing an exact match between image and GCPs coordinates 

implemented in the software.  Additional auto tie points were 

generated automatically to improve the aero-triangulation results.  

Ortho-images and DSMs were produced from the flights; DSMs 

were interpolated from the densified point clouds and used to 

ortho-rectify the individual images.  The final step combined the 

ortho-rectified images to form a seamless ortho-image mosaic.  

The ortho-mosaic was georeferenced to UTM-WGS84 zone 43N 

Pakistan.  The final outputs were an RGB (visible) GeoTIFF with 

a resolution of 3.5 cm/pixel (Figure 3) then the masked the only the 

kinnow area for calculating vegetation indices (Figure 4).  The 

NDVI, TNDVI, SAVI, MSAVI2 and MCARI2 layers were 

generated in raster calculator from extracted red (R) and NIR 

channels.  The index calculator function of Pix4D was used for 

generating VIs maps (Figure 5).  To optimize internal camera 

parameters, such as focal length, principal points, lens distortions, a 

calibration file (certified by SensFly on canon S110 NIR camera) 

was uploaded in the software. 

The 46 GCPs with a known albedo for Red, Green and NIR 

channel (reflectance panel) were used to calibrate the camera to 

achieve uniform quality of image (exposure and brightness) and for 

atmospheric correction in the software section processing options, 

point 3 DSM, Ortho-mosaic, Index and for creating VIs map.  The 

resolution of reflectance map (NDVI, TNDVI, SAVI, MSAVI2 and 

MCARI2) has been set at 3.5 cm/pixel GeoTIFF.  GeoTIFF 

images and georeferenced sampling data were processed for 

agronomic purpose with ERDAS 14.0 

 
Figure 3  Ortho-mosaic image of the study area 
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Figure 4  Masking the the kinnow orchard from ortho-mosaic 

image 

 
Figure 5  Schematic diagram of the study 

 

2.5  Spectral Vegetation Indices 

NDVI was originally developed to provide information about 

vegetation, (biomass and LAI) and chlorophyll content in leaves 

(Rouse et al., 1974).  Till now it has been used in a variety of 

applications including change detection, crops prediction, yield 

estimation, and most importantly disease monitoring by several 

scientists (Bulanon et al., 2013; Grieve et al., 2015; Ramsey et al., 

1995; Wade et al., 1994).  The index is sensitive to the presence 

of green vegetation and can be defined by equation (1). 

NIR Red
NDVI

NIR Red

−
=

+
                 (1) 

2.6  Transformed Normalized Difference Vegetation Index 

(TNDVI) 

Transformed Normalized difference vegetation index (TNDVI) 

was proposed by tucker, 1979.  This index is robust for biomass 

and vegetation.  

NIR Red
TNDVI SQRT 0.5

NIR Red

− 
= + 

+ 
          (2) 

2.7  Soil adjusted vegetation index (SAVI) 

SAVI was proposed by Huete (1988) to account for the optical 

soil properties in the plant canopy reflectance.  The SAVI was 

calculated according to Equation (3).  

( )
NIR Red

SAVI 1
NIR Red

L
L

− 
=  + + + 

           (3) 

where, L is a constant.  SAVI involves a constant L.  The 

constant L was introduced in order to minimize soil brightness.  

SAVI defined the soil-adjustment factor L in the SAVI equation 

varying from 0 to 1 according to the canopy density.  L decreases 

with increases in vegetation amount.  For L = 0, SAVI is equal to 

NDVI.  According to above cited papers, we have set the L value 

at 0.5 for this study. 

2.8  Modified Soil Adjusted Vegetation Index (MSAVI2) 

MSAVI2 was introduced by Qi. et al. (1994) to minimize 

soil-induced variations in vegetation indices and can be expressed 

by following equation (4). 

MSAVI2=(2×NIR+1–SQRT((2×NIR+1)2–8×(NIR–RED))) (4) 

2.9  Modified Chlorophyll Absorbed Ratio Index 

MCARI is the modified form of CARI.  To enhance the 

ability of CARI that converts into MCARI.  Modified chlorophyll 

absorbed ratio was obtained by the following equation as described 

by (Daughtry et al., 2000). 

MCARI= [(R700-R670)-0.2*(R700-R550)*(R700/R670)] 

2.10  Statistical Analysis and Mapping 

Different vegetation indices were calculated by using the mean 

values of the reflectance in green, red and NIR portion of the 

electromagnetic spectrum of UAVs.  The derived vegetation 

indices; NDVI, TNDVI, SAVI, MSAVI2 and MCARI2 proposed 

different band ratios which demonstrated the feasibility of 

estimating the kinnow chlorophyll contents.  Statistical analysis 

was performed to assess and established relationship between 

UAVs derived parameter and ground-truthing chlorophyll by 

performing regressional model.  Probability and spatial 

distribution of chlorophyll content was mapped to identify the 

Coefficient of Determination (R2) between various vegetation 

indices and chlorophyll content.  The correlation coefficient was 

used to identify the most sensitive vegetation indices to chlorophyll 

then the highest R2 values were used to develop regression equations 

to predict chlorophyll content from spectral reflectance data. 

3  Results and Discussion 

3.1  NDVI and kinnow tree leaves chlorophyll content 

Normalized difference vegetation index (NDVI) is that in 

which we caluclate the photosynthtical absored radation.  The 

NDVI map showed the status of the kinnow orchard at the 

komomin, district Sarghoda.  NDVI map showed the minimum 

value of 0 which ranged to highest value of +0.9923.  Water 

bodies and builtup area has negative values where as strong postive 

values show high dense green vegatative area (Figure 6).  In 

pothwar region district Chakwal found impontant value about 

agriculture aspect so higher values of NDVI in map showed the 

rich vegatation. 

 
Figure 6  NDVI map of the kinnow orchard 

 

A positive and linear relationship was observed between NDVI 

and the kinnow tree chlorophyll contents.  The regression 
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accounted for 79% of the variation in the data (R2 =0.79) which 

means that the NDVI value varies with leaf chlorophyll contents 

(Figure 7).  The  regressional model  (Y = 188.93X) interprets 

the significant interaction between NDVI and the the kinnow tree 

leaves chlorophyll contents.  The results are also supported by 

(Hashmi et al., 2011) with R2 values of 86%. 

 
Figure 7  Relationship between NDVI and chlorophyll content of 

the kinnow tree leaves 
 

3.2  TNDVI and kinnow tree leaves chlorophyll content 

Transformed normalized difference vegetation index is used 

for the measurement of greenness and biomass in the crops.  The 

TNDVI map showed variation across the kinnow orchard in 

kotmomin at district Sargodha.  Minmum  value was 0.707 and 

maximum value was 1.2247 (Figure 8).  The kinnow trees 

showewd higher content of greenexx and NDVI is usally satuare 

under high greeness content.  The TNDVI showed better range for 

estimation of greeness indexs as compared to NDVI.  

 
Figure 8  TNDVI map of the kinnow orchard 

 

The results of regression model interpreted the significant 

relationship between TNDVI and the kinnow tree leaves 

chlorophyll contents.  The regression model (Y= 225.44X) 

accounted for 85% of the variation in the data (R2 = 0.85) which 

means that the TNDVI values varied with leaf chlorophyll contents.  

The value of R2 = 0.85 showed the accuracy between the 

chlorophyll content and TNDVI which explained the fitness of 

model (Figure 9).  The chlorophyll concentration varied with plant 

age, soil available nutrients and many other factors.  The results 

are also supported by the relationship between chlorophyll content 

and TNDVI (Blackburn & Steele, 1999; Bell et al., 2004; Li-Hong 

et al., 2007) with R2 value of 0.72, 0.88 and 0.82 respectively.  

 
Figure 9  Relationship between TNDVI and chlorophyll content 

of the kinnow tree leaves 
 

3.3  Soil adjusted vegetation index (SAVI) and kinnow tree 

leaves chlorophyll content 

Map of SAVI index showed the variations across the kinnow 

orchard.  In the map, Figure 10 showed that lower value was zero 

and higher value was 1.4971.  The results of regression model 

interpreted the significant relationship between SAVI and the 

kinnow tree leaves chlorophyll contents.  SAVI also showed 

positive relationship with the the kinnow leaves tree chloropyll 

contents but was less as compared to NDVI and TNDVI.  SAVI 

representd R2 value of 0.73 with regression model (Figure 11).  

The value of R2 = 0.73 showed the accuracy between the 

chlorophyll content and SAVI which explained the fitness of model 

(Figure 11).  

 

Figure 10  SAVI map of the kinnow orchard 

 
Figure 11  Relationship between SAVI and chlorophyll content of 

the kinnow tree leaves 
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3.4  Modified Soil adjusted vegetation index (MSAVI2) and 

kinnow tree leaves chlorophyll content 

MSAVI2 is modified form of SAVI.  The map of MSAVI2  

showed the chlorophyll variations across the kinnow orchard.  

MSAVI2 values ranged from 0 to 0.9961 which classified the study 

area from low to dense vegetation areas (Figure 12).  Low values 

of chlorophyll contents usually responded with low vegetative or 

non-vegetative areas while higher value of chlorophyll content 

showed area with dense vegetation. 

 

Figure 12  MSAVI2 map of the kinnow orchard 
 

MSAVI2 values varied across the whole field of the kinnow 

orchard at kotmomin.  A positive and strong relationship found 

between the kinnow chlorophyll content MSAVI2 with higher 

coefficient of determination (R2) value of 0.89 (Figure 13).  This 

index proved more accuracy of estimation of chlorophyll content 

by reducing the background noise effectively.  MSAVI2 removed 

the soil background noise and improved the prediction efficiency.  

MSAVI2 proved more robust index for estimation of the kinnow 

chlorophyll content among all other indices used in this study.  

The relationship between MSAVI2 and the kinnow chlorophyll 

content was found very strong as compared to TNDVI, NDVI, 

SAVI and MCARI2 The study results are also supported by 

(Haboudane et al., 2004; Zhang et al., 2014) with R2 of 55% and 

66.74% respectively.  

 
Figure 13  Relationship between MSAVI2 and chlorophyll 

content of the kinnow tree leaves 
 

3.5  Modified chlorophyll absorption ration index (MCARI2) 

and kinnow tree leaves chlorophyll content 

MCARI is the modified form of CARI.  To enhance the 

ability of CARI that converts into MCARI2.  MACRI2 values 

varied across the whole of field of the kinnow orchard (Figure 14).  

MCAR2I values ranged from minimum value 0-0.04003 to 

maximum value 1.2542.  Low values of chlorophyll contents 

usually responded with low vegetative or non-vegetative areas 

while higher value of chlorophyll content showed area with dense 

vegetation (Figure 14). 

 
Figure 14  MCARI2 map of the kinnow orchard 

 

There is positive and linear relationship between MCARI2 and 

the kinnow chlorophyll contents.  The regression model accounted 

for 81% of the variation in the data (R2 = 0.81) which means that 

the MCARI2 values varies with leaf chlorophyll contents.  The 

value of R2 = 0.81 showed the accuracy between the chlorophyll 

content and MCARI2 which explained the fitness of model (Figure 

15). 

 
Figure 15  Relationship between MCARI2 and chlorophyll 

content of the kinnow tree leaves 
 

All indices (NDVI, TNDVI, SAVI, MSAVI2 and MCARI2) 

showed positive and linear relationship with kinnow tree leaves 

chlorophyll contents while MSAVI2 showed strong relationship 

(R2 = 0.89) with regression model Y=14.96X (Figure 12).  In this 

study, MSAVI2 showed improved results as compared to others 

studies (Liao et al., 2013).  

3.6  Probability Map of Chlorophyll Contents 

The probability Map of chlorophyll content showed the status 

of spatial distribution of chlorophyll contents in the kinnow orchard 

at Kotmomin.  The probability map predicted the value of 

chlorophyll contents for future years.  Threshold value play 

important role in the prediction of the value.  The probability map 

value ranged from 0 to 1.  When the values lies near to 1, 

represented higher chlorophyll content.  In the legend showed that 

more values were lie near to 1, which explained higher value of 

chlorophyll content shown in map with Red color.  Some area 

shown in Blue color in the map, explained the lower values for 

chlorophyll contents.  This predicts the vegetation pattern for the 

whole field of the kinnow orchard in district Sargodha (Figure 16). 
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Figure 16  Spatial distribution map of chlorophyll content of the 

kinnow orchard at Kotmomin 

4  Conclusions 

Chlorophyll is an important crop biophysical property on 

which we can depend to assess crop health and make early 

predictions for final crop yield.  The current study investigated the 

feasibility of multispectral UAVs data to map the kinnow tree 

leaves chlorophyll at Kotmomin in district Sargodha.  Five 

different vegetation indices were derived from multispectral UAVs 

including NDVI, TNDVI, SAVI, MSAVI2 and MCARI2 and 

compared the results with the ground-truthing data of the kinnow 

tree leaves chlorophyll contents taken by chlorophyll meter 

(SPAD-502 Minolta).  Linear regression analyses were developed 

between different vegetation indices and the kinnow tree leaves 

chlorophyll contents to develop prediction model for kinnow tree 

leaves chlorophyll content..  MSAVI2 and TNDVI showed strong 

and positive relationship with the kinnow tree leaves chlorophyll 

content with value of R2 = 0.89 and 0.85 respectively among all 

other indices (MCARI2, NDVI, SAVI) used in the study.  

MSAVI2 proved to be more robust index for accurately estimation 

of kinnow tree leaves chlorophyll content in real time.  The results 

showed the efficiency of multispectral UAVs for mapping spatial 

differences in chlorophyll content at the regional scale.   
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