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Abstract: Unmanned Aerial Vehicle (UAVs) and crop sensors are the most widely used remote sensing tool in precision 
agriculture.  Use of UAVs in precision agriculture is attracting increasing interest due to its unique non-destructive approach.  
In recent years, dramatic evolution of precision agriculture technology has been driven by technologies such as sensors and 
controllers, telematics, and UAVs.  An intriguing area in the field of precision agriculture and UAVs is big volume of data and 
its analysis that have not been dealt with in depth.  The objective of this study was to validate the crop data acquisition 
procedure and the crop relationship with different type of data acquisition technique.  In particular, this paper will compare 
ground based active optical sensor data collection with UAVs imagery for site-specific nitrogen management.  To accomplish 
these objectives randomized complete block plantation experimental design was used with four treatments and four replicates.  
The plots were 12 rows wide at 38” spacing and were 125 ft. in length.  GreenSeeker field sensor and Micasense sensor for 
UAVs was used to evaluate the Normalized Difference Vegetation Index.  The software used to analyze the data were 
Microsoft®Excel® 2013, Statistical Analysis Software (ver.9.4) and ESRI ArcGIS (ver. 10.3).  The results showed that UAVs 
assessed NDVI are good indicator of crop nutrition along with the ground based crop sensors.  The result of the statistical data 
analysis showed that NDVI values are dependent on nitrogen application rate.  The average NDVI value for no nitrogen 
application was recorded 0.54 whereas for 240 lb./acre nitrogen application it was noted to be 0.76.  Crucially, this correlation 
holds true for definite extent of nitrogen application rate.  Because there was not any significant change in NDVI for      
160 lb./acre and 240 lb./acre.  The NDVI values being 0.74 and 0.76 respectively.  The results are significant because it 
shows the potential of further validating the use of aerial imagery derived NDVI for real time application of crop nutrient.  
This research has also proven that UAVs are reliable platform for nutrient assessment and making crop management decisions. 
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1  Introduction  

The concept and method of farming has changed over the time.  
The traditional ways of farming, use of animals are becoming 
obsolete throughout the world.  Farming is more of technology 
dependent these days.  Since the introduction of precision 
agriculture, the total scenario of agriculture has changed.  
Precision Agriculture according to Cambardella and Karlen[1] is a 
crop and soil management system that involves application of 
computer for acquiring and analysis of data and data storage system 
to collect the required information for site-specific input 
application.  Precision agriculture is the application of right 
amounts of input (pesticides, herbicides, fertilizers, etc.) at the right 
time and right place to increase the production, minimize the input 
and also protect the environment. 
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According to Cook and Bramley[2] crop is a spatially varied 
product that depends on variability of location.  An automatic data 
acquisition system developed by Gomide et al.[3],  was used for 
the study of data management and spatial variability in the crop 
production system.  The benefit of precision agriculture does not 
depend only on quantity of data but also depends on quality of data 
and method of application.  One of the major sources of data are 
sensors in the field.  They are used to measure the physical 
quantity in the field.  Based on the data carriers, sensors can be 
categorized as mechanical, electrical, optical, acoustic, pneumatic 
and electromagnetic.  These sensors are used to gather 
information like soil moisture, crop stress, soil properties, nutrients, 
etc[4].   Automatic system was used to collect data of soil water 
availability, soil compaction, soil fertility, biomass and grain yield, 
etc[5]. 

In recent years, dramatic evolution of precision agriculture (PA) 
technology has been driven by technologies such as sensors and 
controllers, telematics, and unmanned aerial vehicle (UAVs).  The 
economic impact of UAVs is estimated as $82 B in the next 10 
years, with over 80% of it being in the precision agriculture 
sector[6].  In crop production, timely assessment of relevant data is 
very critical, and the available data sets are too intricate that require 
extensive knowledge for visualization and information collection[7].  
The study by Kamilaris et al.[8],  shows the various impediments 
(data collection, delivery and analysis, visualization, spatial 
resolution, sampling errors, reliability and availability of tool and 
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techniques) which still possess a potential of further research and 
development in the field.  The dissemination of information 
should be based on the type of crop and farmers of the specific area.  
Based on the capability and credentials of data users (farmers, crop 
advisors, farm assistants) mobile and web applications are required 
to be developed[9].  The reason behind the dawdling adoption rate 
of precision agriculture are lack of consistency, ability to exchange 
and use information, user-friendliness and security measures[10] 
With major advances in field and equipment-based sensor 
technology and high-resolution data by UAS the potential to 
revolutionize agriculture rests on successfully addressing a number 
of challenges relating to acquiring, understanding, and using Big 
Data. 

Precision farming tools of the modern days are used for 
collecting spatial information to enhance the efficiency of field 
work by optimizing the input and minimizing the impact to the 
environment.  The major concern is the integration of all the 
available field data for quintessential decision support system.  
Where the issues related to data analysis and support system: 
protocols, standards, easy to use tool for farmers, researchers and 
consultant, systematic design for data analysis and integration are 
addressed in a very precise manner[11].  The efficient and 
productive analysis of big data in precision agriculture sector will 
help farmers to get rid of field uncertainties.  In turn, improving 
the productivity and reducing the cost of production[12].  The use 
of precision agriculture data in an appropriate manner can influence 
both the environmental (contamination of soils, nitrogen in ground 
water, soil erosion) and economical (excessive fertilizer cost) risk 
reduction[13].  There is a need of web-based platform that can 
handle the high volume and variety of data with an ease.  The 
long-term objective of the project is to develop a web-based 
computer data processing program to analyze the big data and 
deliver it in useful format to the farmers in real time or near real 
time.  In his review of current and future advances of precision 
agriculture, Lan et al.[14],  highlights the need of  real time image 
processing, data analysis and interpretation to figure out the 
influential factor and their relationship.  The data acquisition, 
storage, handling, online data processing and delivery to the 
farmers.  The project also aims to find the identification of 
delivery mechanism of the processed product such as prescription 
map, locations or useful imagery to handheld devices such as iPad 
or iPhone in the field farm equipment.  The present paper aims to 
validate the crop data acquisition procedure and the crop 
relationship with different type of data acquisition technique.  In 
particular, this paper will compare ground based active optical 
sensor data collection with UAVs imagery for site-specific N 
management. 

The growing web-based technology has completely transferred 
the geospatial technologies like GIS from desktop to web-based 
geo-spatial system.  The data from different users of different 
regions help to work with updated spatial data with large coverage 
area[15].  The main advantage of this system is easy availability, 
accessibility and usability of the spatial data.  According to 
Iftikhar and Pedersen[16], xml-based data exchange was proposed 
which was mainly focused on the need of data exchanges between 
the farm computer and devices and among farmers’ contractors, 
suppliers and advisory services.  Also, the GIS software is an 
effective tool for developing yield maps and elevation maps and 
relating remotely sensed data to each other for spatial analysis.  
The effectiveness of tools such as GIS needs great amount of effort, 
training and experience[17] Most of the GIS packages offer many 

functions with less value to agricultural application and are more 
expensive than the software packages developed by Agri-Logic 
Inc., AGRIS corporation, John Dere, Precision Farming group, etc.  
This software offers more flexibility for agricultural data.  This 
supports the necessity of development of integration tools and 
decision support system for agricultural data[18].  Lack of better 
data standards prohibits the future use of resulting information 
without making any changes and manual data input[19].  There are 
no specific data standards for uploading the data into web and there 
is a lack of good visualizing and analyzing tools where farmers can 
extract an insight and take cost-effective crop management 
decisions.  Presently available tools and techniques require an 
extra effort and time for separating the data and uploading it to the 
web depending upon the volume of data.  The results of this study 
are significant because the precision agriculture data from different 
regions and farmers can be integrated into one to generate a general 
idea for making farming decisions.  The developed technique is 
simple and easily accessible for visualizing and analyzing spatial 
data.  The proposed tool does not require advanced skill and 
knowledge such as complicated software GIS.  The web-based 
platform does not utilize extra space in personal computer and can 
be accessed from any place with internet access. 

2  Experimental design 

The study was conducted in Mississippi State University 
research field (Latitude: 33.470 N and Longitude: 88.763 W).  
The total area of the corn field was 0.8 hectares.  The corn field 
was sowed with DeKalb Brand-DKC67-72 variety at 32000 kernels 
per acre on April 13, 2017.  The plantation design was a 
randomized complete block with four treatments and four replicates.  
The plots were 12 rows wide at 38” spacing and were 125 ft. in 
length.  There was a 10 ft alley in between each plot (Figure 1).  
The plot was fertilized with nitrogen (N) at the rates of 0, 80, 160, 
and 240 lb.  N/acre as a 50/50 split application with the first half 
applied at V1 April 1, 2017 and the 2nd half of the rate applied at 
V6 on May 16, 2017.  The N source was liquid UAN 
(urea-ammonium nitrate) 32% N applied with an applicator 
equipped with coulters and liquid knives spaced 9” from one side 
of each corn row and 3” deep.  Corn was harvested with a 
two-row plot combine with an automated weighing system on 
August 24, 2017.   
 

 
Figure 1  Corn field with treatment blocks 
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 3  Material and methods 

GreenSeeker field sensor and Micasense sensor for UAVs was 
used to evaluate the Normalized Difference Vegetation Index.   
The UAVs sensor readings were taken on May 06, 2017 and June 
09, 2017.  Multiple band preprocessed digital data were provided 
by the Geosystems Research Institute, Mississippi State University 
for each date (Table 1). 
 

Table 1  Spectral bands of digital image 

Bands Name Spectral range (NM) 

1 Blue 440-510 

2 Green 520-590 

3 Red 630-685 

4 Red Edge 690-730 

5 Near-Infrared 760-850 
 

We decided to use ArcGIS (ver 10.3) to further process the 
data and determine the corresponding NDVI values for different 
blocks and treatments.  Image analysis tool available in ArcGIS 
was used to ascertain the NDVI values from the combinations of 
band rather than using raster calculator.  The image analysis 
directly gives the scientific output.  Whereas, raster calculator 
requires formula input which is a tedious process.  Then, 
calculated the NDVI-Red and the NDVI-RedEdge with Red band 
and Near-Infrared (NIR) band and NDVI-Red and RedEdge band 
respectively with the help of image analysis tool.  The 
computational formula for NDVI-Red[20] and NDVI-Red Edge[21] 
are shown in Equations (1) and (2), respectively. 

red
NIR RedNDVI
NIR Red

−
=

+
     (1) 

Red Edge
NIR Red EdgeNDVI
NIR Red Edge

−
=

+
    (2) 

Then, the values were exported to Microsoft®Excel® 2013 for 
regression analysis on SAS.  PROC REG procedure was used for 
the analysis.  Statistical analysis also included the summary of 
statistical parameters for each treatment.  Variance of treatments 
was studied with the help of t-Test for 95% confidence interval. 

Another handheld NDVI sensor, GreenSeeker, developed by 
Trimble Inc was used to evaluate the plant condition.  The sensor 
emits its own light which is incident on the plant.  And then, 
measures the reflected back red and infrared range of light.  The 
value obtained from the sensor are in terms of NDVI reading that 
ranges from 0.00 to 0.99 (NDVI value ranges from –1 to +1).  
There is a trigger that is pushed accordingly for continuous or 
individual readings.  We took 10 random readings of NDVI with 
GreenSeeker from each block.  First set of data readings was 
taken on May 20, 2017 and the second set on June 9, 2017.  We 
had planned to take the first set of data on the same date as of 
UAVs.  But due to some technical issues that did not become 
possible.  In total, 160 readings were taken for both the dates.  
The readings were manually recorded in note book along with the 
geospatial location.  We also used Trimble Juno t41/5 rugged 
handheld computer to record the latitude and longitude of each 
point.  Again, the note book readings were manually transferred to 
excel sheet before plotting the values in ArcGIS with the spatial 
locations.  Following that, they were converted to shapefile (ESRI 
file format).  We then used “ADD XY data” tool for plotting the 
values.  The NDVI values were correlated with the respective 
treatment blocks.  Exploratory analysis of the sensor data was 

performed in SAS similar to UAVs data that included regression 
analysis and summary of statistical parameters for each treatment.  
It was not possible to investigate the significant relationships of 
amount of N application and NDVIs.  Further data collection is 
required to determine and validate exactly how amount of N affects 
biomass content at different growth stages.   

4  Results 

4.1  Effect of treatment on NDVI values 
Descriptive statistical analysis was used to analyze the NDVI 

values of two different growth stages for four different N 
application rates (trials).  Table 1 and Table 2 compares the 
summary statistics for two different vegetative stages.  The mean, 
minimum and maximum NDVI values along with standard 
deviation were calculated for each trial plot.  It is apparent from 
the Table 2 and Table 3 that the average NDVI value has increased 
with increasing amount of N application for both the dates 
(Vegetative Stages).  From the table, it can be seen that the 
maximum NDVI value 0.86 is for the application rate of       
240 lb./acre (May 20, 2017) and 80 and 160 lb./acre (June 9, 2017).  
Whereas, lowest NDVI value 0.4 (May 20, 2017) and 0.55 (June 9, 
2017) is for no N application respectively.  These Tables (2 and 3) 
are quite self-revealing that there was clear distinction between 
applied and not applied, but there was no significant difference in 
different application rates.  

 

Table 2  Summary of statistical parameters for each treatment 
by field sensor (20 May, 2017) 

Amount of n 
lb./acre 

Average
(NDVI) 

Min 
(NDVI) 

Max 
(NDVI) SD Number of 

data 

0 0.54 0.4 0.72 0.06 40 

80 0.72 0.47 0.84 0.08 40 

160 0.74 0.63 0.84 0.06 40 

240 0.76 0.5 0.86 0.08 40 
 

Table 3  Summary of statistical parameters for each treatment 
by field sensor (09 June, 2017) 

Amount of n 
lb./acre 

Average
(NDVI) 

Min 
(NDVI) 

Max 
(NDVI) SD Number of 

data 

0 0.73 0.55 0.8 0.05 40 

80 0.80 0.63 0.86 0.05 40 

160 0.82 0.76 0.86 0.02 40 

240 0.80 0.78 0.85 0.1 40 
 

4.2  Characterized relationships between UAVs-NDVI and 
GreenSeeker-NDVI 

The NDVI (green-ness) by the field sensor and UAVs sensors 
are indicator for crop-nutrition.  A positive correlation (R-square 
= 0.34) was found between UAVs-NDVI values and GreenSeeker- 
NDVI values.  The scatter plot between NDVI values of UAVs 
and GreenSeeker in Figure 1 shows reasonable positive correlation.  
The marked observation to emerge from the data comparison: both 
the NDVI showed similar trend with significant offset values.  
This analysis provides considerable insight into NDVI by field 
sensor and UAVs as indicator of crop-nutrition.  The result 
reinforces the usefulness of UAVs sensors as successful tool for 
gathering post processing information in the field of agriculture.   
4.3  Relationship between NDVI and N application rate at two 
different growth stages. 

A separate analysis with N application rate and 
NDVI-RedEdge and NDVI-Red as factors confirmed that the effect 
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of amount of N application on NDVI values are more prominent on 
later growth stages (Table 4).  The analysis of UAVs images for 
May 3, 2017 dissects that none of the variability in NDVI was 
explained by the amount of N applied.  At early growth stages, the 
correlation between N and NDVI-RedEdge and NDVI-Red is 
worth noting because no significant differences were found 
between both RedEdge and Red NDVIs.  However, at the later 
vegetative stage, there was a significant positive correlation 
between GreenSeeker-NDVI values and N application.  46 
percent of variation in NDVI is explained by the amount of N 
applied.  

 
Figure 2  Relationship between ground field sensor NDVI and 

NDVI derived from UAVs imagery data 
 

 

Table 4  Regression coefficients (R2) and the models of the 
relationship between N application rate and NDVIs 

 Rededge Red 

UAVs (MAY 3) 
NDVI = 3E-05N (lb./ac) + 

0.0954 
R2 = 0.0043 

NDVI= -3E-05N (lb./ac) + 
0.1868 

R2 = 0.0006 

GreenSeeker  
(MAY 20)  

NDVI = 0.0008N (lb./ac) + 
0.5876 

R2 = 0.46 
 

4.4  Treatment comparison using Analysis of Variance 
For the purpose of assessment, how the combination of 

different N treatments improved the corn biomass content t-test at 
0.05 percent significance level.  We can observe from the Table 5, 
there is strong significant difference between no N treatments and 
N treatments.  On the other hand, there is less or no any 
significant difference in the NDVI values for increased rate of N.  
From the result, it is clear that increasing the N rate after certain 
extent will not make any difference in the biomass content.   
 

Table 5  P-values for the test of significant different N rates; 
analysis of variance (p<0.05) 

 NDVI _ 0 NDVI _ 80 NDVI _ 160

NDVI _ 0    

NDVI _ 80 Strong significant 
different (1.284e-07)   

NDVI _ 160 Strong significant 
different (1.273e-13) 

Not significant different 
(0.01024)  

NDVI _ 240 Strong significant 
different (1.315e-13) 

Weak significant 
different (0.006102) 

No difference
(0.9098) 

5  Discussion 

UAVs is a very useful tool for monitoring the changes in crop 
status and yield estimation over the growing period and identifying 
the input requirements to maximize the yield[22,23].  Several 
authors have expressed about further advances in real time 

application of UAVs for ease of farmers to manage the field 
crop[24,25].  As mentioned in the introduction, the main hypothesis 
of this study is UAVs data derived imagery significantly correlates 
with biomass content of the crop and can be used for real time or 
near real time corn N deficiency management techniques.  The 
study was also planned to compare the UAVs emanated NDVI to 
already proven technology active ground sensors[26,27].   

The current study found that UAVs assessed NDVI are also 
good indicator of crop nutrition.  The result of the statistical data 
analysis showed that NDVI values increased with the amount of N 
applied.  Another important finding was that this study did not 
find any significant difference between the higher throughput of the 
N.  This results match those observed in earlier studies[28,29].  The 
result of anova demonstrated two things; first, the N application 
amount resulted in higher NDVI values to a certain level.  Second, 
there were not any significant differences with the further increase 
of N rate.  In accordance with the present results, previous studies 
have demonstrated that there is no any considerable increase in the 
yield with top dressing of N[29]. 

The potential of UAVs acquired NDVI and ground sensor has 
been compared effectively.  Various studies have argued for the 
early vegetative stage (V6) of crops for substituting the insufficient 
N[30,31].  Conversely, the NDVI value increases with the plant 
growth.  At early growth state, the average UAVs-NDVI values 
are lesser compared to the GreenSeeker-NDVI values for the same 
plot.  We speculate this might be due to dominant reflection of 
soil back to the UAVs sensor.  The rather contradictory result for 
ground sensor might be due to recording of data directly over the 
plant minimizing the effect of soil reflectance.  

Our work clearly has some limitations.  Despite this we 
believe our work could be a spring board for further validating the 
use of UAVs derived NDVIs for web based and real time 
application in crop production.  The most important limitation is a 
result of fact that there were not sufficient data to make a concrete 
conclusion.  The current study was limited by the number of 
UAVs flights due to lack of better coordination between geospatial 
research institute responsible for flights.  However, given the small 
sample size caution must be exercised for the analysis of the data.  

The study has gone some way towards enhancing our 
understanding of significance of UAVs imagery for real time crop 
management decisions.  The research has proved that there is 
good correlation of UAVs-NDVI with the biomass content and in 
rage with widely used active crop sensing technology.  The 
present findings might help to estimate the optimum amount of N 
application for the corn crop.  This could eventually lead to 
maximize profits through input reduction.   

6  Conclusions 

It is difficult to arrive at any concrete conclusion, but we have 
obtained comprehensive results proving that UAVs derived NDVI 
and ground based sensor NDVI both indicates the level of N in the 
corn crop.  By using the available data, we tested there is 
significant relationship between UAVs and active optical sensors.  
More generally, these basic findings are consistent with research 
showing that UAVs as a platform mounted with infrared sensors 
can be more feasible to identify biomass content without 
compromising the accuracy of ground based sensors.  Our data 
suggests that we still have to go long way to further validate the 
findings.  Future research should consider different crop fields and 
increase the sample size and number of flights.  
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