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Abstract: Unmanned aerial vehicles (UAVs) remote sensing with advanced optical techniques has become a promising tool to 

monitor crop growth status.  Although numerous studies have been conducted to assess crop growth using UAV-based image 

data, there still exists a challenge for achieving a satisfactory result.  This study thus employed UAV-based RGB and 

multispectral (MS) imaging to estimate the leaf area index (LAI) of rice during the whole growth period.  With five nitrogen 

(N) treatments during rice growth, an octo-rotor UAV was used to collect multi-temporal RGB and MS images of rice canopies.  

Vegetation indices (VIs) were then extracted from RGB and MS images.  The prediction models for LAI were developed 

based on four machine learning methods including partial least squares regression (PLSR), support vector machine (SVM), 

random forest (RF), and extreme learning machine (ELM).  The estimation performances of the models were also evaluated.  

The results showed that the ELM model with fusing the VIs from RGB and MS images achieved the best prediction result.  

The initial jointing, booting, heading and filling stages and the combination of all growth stages achieved a satisfactory 

prediction of LAI with the coefficient of determination (R2) of 0.78, 0.45, 0.55, 0.64 and 0.70, respectively, which indicated that 

the initial jointing stage provided the best result for LAI prediction.  Further, the performance of the model developed from the 

optimal VIs for LAI prediction was improved with the root mean square error of prediction (RMSEP) reduced by 18.5% at 

whole growth stages and decreased inconsistently at each individual growth stage.  In summary, this study has demonstrated 

that fusion of UAV-based RGB and MS images has a great potential for rice LAI prediction. 
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1  Introduction  

Leaf area index (LAI) is a useful indicator for crop growth 

diagnosis[1], biomass estimation[2] and yield prediction[3,4] in 

precision agriculture.  Rice is one of the leading food crops of the 

world, and timely and accurate monitoring of rice LAI could 

improve the fertilizer management and ensure world food security.  

Traditional methods for LAI measurements mainly rely on the 

destructive sampling and field survey.  Although these methods 

can provide an accurate measurement of LAI within a specific 

range, they were costly and labor-intensive, especially for the data 
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collection at a large field scale[5,6].  Therefore, it is essential to 

develop an efficient method to monitor LAI.  

Extensive researches have been carried out using remote 

sensing techniques to estimate LAI at different growth stages.  

Spectral information obtained from multispectral or hyperspectral 

data were widely used for crop monitoring[7,8].  Wan et al.[9] used 

vegetation indices (VIs) including normalized green red difference 

index (NGRDI), red green ratio index (RGRI) and modified green 

red vegetation index (MGRVI) to estimate the flower number and 

obtained a good result with the coefficient of determination (R2) of 

0.95.  Yue et al.[7] found that there was a high correlation between 

the ratio vegetation index (RVI) and LAI, and they also proved that 

a better estimation of crop height can be achieved by using multiple 

VIs compared with those using a single vegetable index.   

Multispectral (MS) or hyperspectral (HS) images from satellite 

or unmanned aerial vehicle (UAV) platforms showed a great 

potential to estimate LAI of crop[9].  Bacour et al.[13] developed a 

LAI estimation model with the reflectance extracted from the 

satellite images, and the best result of estimating LAI was achieved 

with the root mean square error (RMSE) of 0.47.  Jin et al.[14] 

estimated the LAI of winter wheat by using multi-temporal 

Huanjing-1A/B (spectral) and RADARSAT-2 (SAR), and the LAI 

estimation was improved by combing several spectral VIs (e.g. the 
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enhanced vegetation index (EVI) and modified triangular 

vegetation index (MTVI2)) and radar polarimetric parameters (e.g. 

the radar vegetation index (RVI) and double-bounce eigenvalue 

relative difference (DERD)). 

Compared with satellite-based remote sensing, the low-cost 

UAV remote sensing system has received much attention for crop 

growth monitoring[15-17].  Due to the flexibility and simplicity of 

operation and image processing, UAV remote sensing has shown a 

great potential for LAI estimation and practical applications in a 

small farmland[18].  Yue et al.[7] combined the VIs extracted from 

UAV images and the crop height to estimate LAI of winter wheat, 

and achieved the R2 of 0.94 (RMSE = 0.33) and 0.58 (RMSE = 

0.86) by using random forest (RF) and partial least squares 

regression (PLSR) methods, respectively.  Kanning et al.[19] 

employed a UAV equipped with a hyperspectral camera to extract 

the canopy spectra, and achieved a good prediction result of wheat 

LAI based on the PLSR method with R2 = 0.79 and RMSE = 0.18, 

respectively. 

Although many studies have been performed by using UAV 

remote sensing to estimate LAI of different crops, they mostly 

focused on acquiring the data with a single imaging sensor.  

Several factors such as canopy structure, illumination condition, 

and growth stages could affect the data acquired from the UAV 

remote sensing platform.  Therefore, this study was aimed to 

estimate the rice LAI by using UAV-based RGB and MS images at 

multiple growth stages, and the specific goals were to (1) 

investigate the LAI change during the whole growth period, (2) 

determine the optimal stage and VIs for LAI prediction of rice, and 

(3) select the best prediction model of rice LAI. 

2  Materials and methods 

2.1  Experimental design and LAI measurement 

Rice was planted in Grain-production Functional Area of 

Anhua Town, Zhuji City, Zhejiang Province, China in early June, 

2019 (29°31′5.35″N, 120°6′6.12″E).  There were 100 plots with 

each of 9×5 m2, and a protection lane with the width of 1 m was 

also provided around the experimental plots.  Five nitrogen (N) 

treatments with N0, N1, N2, N3 and N4 of 0, 120, 240, 360 and 

480 kg/ha, respectively, were applied in the form of urea in the 

transplanting, tillering and booting stages with the ratio of 4: 3: 3.  

The same phosphate (P = 120 kg/ha) and potash (K = 240 kg/ha) 

fertilizers were applied to all plots.  Regular field management for 

the irrigation and weed control was carried out based on the 

regional standard.  LAI was measured using the plant canopy 

analyzer (LAI-2200C, LI-COR Inc., NE, USA) as a ground truth.  

The experiment was conducted at the initial jointing, booting, 

heading and filling stages during July-October, 2019.  UAV-based 

RGB and MS images and LAI were collected at the same 

experimental day. 

2.2  UAV-based image acquisition 

An octo-rotor UAV equipped with RGB and MS cameras was 

used to acquire images of rice.  The diameter and the height of 

UAV is 1.1 m and 0.35 m, respectively, with the maximum payload 

of 8 kg.  The RGB camera is the Sony NEX-7 micro single 

camera (Sony, Dugang District, TKY, Japan) with the spatial 

resolution of 6000 × 4000 pixels, and the MS camera 

(MQ022MG-CM, XIMEA, Munster, Germany) with a 16 mm 

fixed focus lens.  The resolution of the MS camera is 409 × 216 

pixels.  Images were acquired at the flight altitude of 25 m with 

the 75% lateral overlap and 60% forward overlap.  The weather 

was cloudless and windless.  The exposure time was modified 

based on the illumination condition during the flight campaign.  

Rice multispectral images were first corrected for radiation 

consistency, and then stitched using Agisoft PhotoScan software 

(Agisoft LLC, St. Petersburg, Russia).  Matching features of 

images were first detected and stitching were automatically 

conducted by the software.  Figure 1 shows the MS and RGB 

ortho-images of rice at the experimental field.  

 
a. MS 

 

b. RGB 

Figure 1  Ortho-images from multispectral (MS) and RGB camera 
 

2.3  Selection of vegetation indices  

Reflectance calibration was first conducted to convert digital 

numbers (DNs) of original MS images into the reflectance based on 

five calibration targets with the known reflectance[20].  Previous 

studies have demonstrated that various VIs extracted from RGB 

images (RGB-VIs) and multispectral images (MS-VIs) can used to 

evaluate the plant growth status[21].  Thus, we selected several 

commonly used VIs presented in Table 1 to estimate rice LAI.  

Based on visible and near-infrared bands, the normalized difference 

vegetation index (NDVI)[22] and ratio vegetation index (RVI)[23] 

were calculated from UAV-based MS images.  In addition, the 

single-band reflectance from MS images was applied to estimate 

LAI.  The VIs calculated from UAV-based RGB images mainly 

included the single-band DNs (R, G and B), single-band 

normalized DNs (r, g and b), excess green (EXG)[24], and 

visible-band difference vegetation index (VDVI)[25].  As shown in 
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Table 1, these VIs calculated from RGB and MS images have been 

proven to have the ability to estimate crop growth status.  The 

correlation coefficient and the significance were compared to select 

the effective index with the best wavelength to achieve a higher 

prediction ability of LAI.  The calculated VIs were the average 

reflectance of the corresponding sampling area in the image.  The 

calculation formulas of various vegetation indices were shown in 

the following Table 1. 
 

Table 1  Vegetation indices (VIs) derived from MS and RGB 

images 

Vegetation indices Calculation References 

MS-VIs   

Single band index Rλ  

Normalized difference vegetation index 

(NDVI) 

(R796 – R679)/ 

(R796 + R679) 
[22] 

Ratio vegetation index  

(RVI) 
R796/R720 [23] 

Normalized difference red edge  

(NDRE) 

(R790 – R735)/ 

(R790 + R735) 
[26] 

Chlorophyll index (RedEdge)  

(CI) 
R796/R732-1 [27] 

RGB-VIs   

Single band index R, G, B, r, g, b  

Excess green index  

(EXG) 
2*g – r – b [24] 

Visible-band difference vegetation index 
(VDVI) 

(2*g – r – b)/(2*g + r + b) [25] 

Visible atmospherically resistant index 

(VARI) 
(g – r)/(g + r – b) [28] 

Note r = R/(R+G+B), g = G/(R+G+B), b = B/(R+G+B), R, G and B are the DNs of 

Red, Blue and Green channels, respectively.  Rλ represents the reflectance of a 

variable band in the spectral region of 600-1000 nm. 
 

2.4  Model building and estimation of LAI 

Different machine learning methods have been used to 

estimation crop growth status, but the prediction capacity for varied 

growth traits was different[29].  Therefore, in this study, four 

machine learning methods including PLSR, support vector machine 

(SVM), RF, and extreme learning machine (ELM) were compared 

to estimate the LAI based on the combinations of RGB-VIs and 

MS-VIs extracted from RGB and MS images at different growth 

stages. 

PLSR is used to find the basic relationship between two 

matrices (X and Y), which can eliminate the multi-linear 

correlation to a certain extent.  The essence of PLSR algorithm is 

based on the maximization of covariance.  During the operation of 

the algorithm, the independent variable data matrix X and the 

dependent variable data matrix Y are decomposed at the same time, 

and the corresponding interpretations of hidden variables and 

response hidden variables are established.  The regression 

equation between the two fully reflects the basic idea of PLSR. 

SVM is a machine learning algorithm based on statistical 

learning and structural risk minimization, and has been widely used 

for solving classification and regression problems[30-32].  Support 

vector regression (SVR) is an important application branch in 

SVM[33].  The difference between SVR and SVM is that the 

SVR’s essence is to find a plane and make the sum of the distances 

of all data in a set to the plane closest instead of finding the largest 

divergence like SVM. 

RF is a parallel learner based on the decision tree.  The 

algorithm does not require a large number of training samples and 

dynamic threshold settings.  It can also perform a better 

vegetation treatment under complex lighting conditions (shadow 

and strong light).  RF algorithm can reduce the overfitting 

phenomenon to a certain extent[34].  The main steps include 

constructing a training set, using set to generate a classification 

model, and then classifying all image pixels. 

ELM has been proven to be a relatively novel learning 

algorithm for single-layer feedforward neural networks (SLFN)[35].  

The ELM algorithm selects input weights and hidden biases 

randomly, and using the Moore-Penrose (MP) generalized to 

analyze the output weights.  Compared with traditional 

gradient-based learning algorithms, ELM has advantages in terms 

of learning speed and generalization performance[35].  Meanwhile, 

it avoids many difficulties faced by gradient-based learning 

methods, such as stopping criteria, local minima, and the 

over-tuned problems. 

When establishing estimation models, the dataset was divided 

into the training dataset (3/4) and the testing dataset (1/4), and 

ten-fold cross-validation was performed to reduce the modeling 

variability.  The R2 and the root mean square error of prediction 

(RMSEP) were used to evaluate model performance[36].  Higher 

R2 and lower RMSEP indicate better estimation performance, and 

the RMSEP could be calculated as follows: 

             (1)

 

where, pi and  represents the measured and the predicted LAI, 

respectively. 

3  Results and discussion 

3.1  Variability of rice leaf area index 

The LAI showed a similar change pattern among five N 

treatments at different growth stages, which increased from the 

initial jointing to the booting stage with a drop until the filling 

stage as shown in Figure 2.  It can be seen that in each treatment 

of rice, the LAI at the initial jointing stage was the smallest, and 

reached the maximum at the booting stage.  As for five N levels, 

the LAI showed an increasing tendency from N0 to N2, and then 

kept a relatively stable value from N2 to N4.  The LAI at each 

growth stage of N4 was larger than the value of other treatments in 

the same period.  N0 has the smallest LAI (2.018) throughout the 

growth period while the maximum value was 7.504 at N4 treatment.  

In addition, it is assumed that large-scale LAI differences at 

different stages of growth can cover most possible situations, which 

also makes it possible to test the ability of UAV remote sensing 

data for rice LAI estimation. 

 

Figure 2  The changes of leaf area index (LAI) with varied 

nitrogen (N) treatments and growth stages 
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3.2  LAI prediction using UAV-based image data 

The rice canopy spectra presented varied values at different 

growth stages.  We first used the reflectance at the full 

wavelengths and VIs as the input of the algorithm first, and 

developed the prediction models using PLSR, SVM, RF and ELM, 

respectively.  Four models presented different prediction 

accuracies of LAI as shown in Table 2.  The ELM models 

developed from RGB-VIs and MS-VIs provided relative better 

results with the R2 and RMSEP of 0.45 and 0.93, and 0.59 and 0.73, 

respectively.  Compared with the result obtained from the single 

sensing data, the prediction performance was improved by fusion 

of RGB and MS image data with best result of R2 = 0.70 and 

RMSEP = 0.54 from ELM.  Therefore, ELM model was finally 

selected from the prediction of rice LAI.  
 

Table 2  Coefficient of determination (R2) and the root mean 

square error of prediction (RMSEP) of different models for 

predicting LAI of rice 

DATA 

SOURCE 

Prediction models 

PLSR SVM RF ELM 

R2 RMSEP R2 RMSEP R2 RMSEP R2 RMSEP 

RGB-VIs 0.18 2.24 0.14 1.35 0.32 0.62 0.45 0.93 

MS-VIs 0.22 1.67 0.46 2.85 0.51 0.59 0.59 0.73 

FUSING 

(RGB & MS) 
0.27 1.84 0.57 0.80 0.67 0.60 0.70 0.54 

 

3.3  LAI prediction accuracies at different growth stages 

The growth status of rice at different growth stages is closely 

related to the final grain yield.  To some extent, LAI can be used 

as a physiological index to predict the yield.  Therefore, it is of 

great significance to develop a model with a high accuracy of LAI 

prediction at different stages.  According to the research in 

Section 3.2, ELM model had advantages in predicting LAI of rice.  

Therefore, these models were used to predict LAI at different 

stages of rice, the results are shown in Figure 3. 

From the Figure 3 and Table 2, it can be concluded that the 

initial jointing, booting, heading, filling and combining all growth 

stages achieved a satisfactory prediction of LAI.  Meanwhile, 

ELM provided the best predictions at the initial jointing stage with 

the R2 and RMSEP of 0.69 and 0.36, respectively, followed by the 

filling stage (R2 = 0.60, RMSEP = 1.15).  However, at the booting 

stage, the model of ELM’s ability was relatively poor with R2 and 

RMSEP of 0.45, 1.09, respectively.  As a whole, ELM worked 

better at all stages with a relatively low RMSEP. 

 

Figure 3  The Coefficient of determination (R2) and the root mean 

square error of prediction (RMSEP) of LAI predict by ELM 
 

3.4  LAI prediction using selected VIs  

To reduce data redundancy and simplify modeling, five VIs 

calculated from RGB and MS images with the highest correlation 

to the LAI were selected based on the Pearson’s correlation 

coefficient (Figure 4a).  We also selected single bands that were 

highly correlated with LAI, including green, red, red edge and 

near-infrared bands as shown in Figure 4b.  Finally, five VIs 

including RVI (796,720), NDRE (797,732), CI, EXG, VDVI and 

six individual bands at 624 nm, 632 nm, 674 nm, 679 nm, 732 nm 

and 838 nm were selected as the input of the prediction model.   

 
a. VIs  b. single band 

 

Figure 4  Correlation coefficient of VIs and single band with LAI 
 

Compared with the ELM model of rice LAI in different stages, 

we can illustrate that based on the high correlation feature band and 

vegetation index as the input data, the prediction accuracies of rice 

LAI at different growth stages were improved except the booting 

stage with a slight decrease as shown in Figure 5.  Compared with 

other growth stages, the model of ELM still obtained the highest R2 

at the initial jointing stage with an increase from 0.69 to 0.78, while 

RMSEP decreased from 0.36 to 0.28.  The prediction accuracy for 
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LAI at the heading stage was significantly improved with the 

RMSEP greatly reduced.  At the same time, compared to full-band 

input, R2 and RMSEP from the filling stage was also improved 

with the R2 increased from 0.60 to 0.64 and the RMSEP reduced 

from 1.15 to 0.22, respectively.  The prediction result of the whole 

growth stage of rice LAI after selecting a special VIs as input is 

shown in Figure 6.  The change of R2 was not obvious, but at the 

same time RMSEP also showed a decreasing trend.  Therefore, we 

can conclude that the method of using the band selected by 

correlation analysis as the model input can improve the prediction 

effect of rice LAI to a certain extent, and effectively reduced the 

RMSEP. 
 

 
a. Initial jointing stage    b. Booting stage 

 
c. Heading stage    d. Filling stage 

 

Figure 5  Prediction results of ELM model for each growing stage of rice 
 

 
Figure 6  Prediction results of four models for all stages of rice 

4  Conclusions 

In this study, we explored the change of LAI with different N 

levels and growth stages.  With the increase of N application, the 

LAI provided an increasing tendency.  The varied growth stages 

also affected the changes of LAI, and the maximum LAI (7.504) 

was presented at the booting stage.  Four machine learning 

methods including PLSR, SVM, RF and ELM were employed for 

LAI estimation, and they presented different prediction 

performances.  With the comparison of four machine learning 

methods for LAI estimation over the entire period, the ELM model 

developed with all VIs extracted from RGB and MS images 

achieved the best prediction performance (R2 = 0.70, RMSEP = 

0.54).  In addition, with the selection of the optimal VIs with the 

highest correlation to LAI, the model performance was improved 

with the RMSEP reduced to 0.44.  The results showed that the 

ELM model with the input of six bands of remote sensing data and 

five VIs obtained the best prediction results of R2 = 0.78 and 

RMSEP = 0.28 at the initial jointing stage.  Overall, UAV-based 

RGB and MS image data achieved a satisfactory prediction of LAI 

for the four growth stages and the combination of all growth stages 

with the highest R2 of 0.78, 0.45, 0.55, 0.64 and 0.70, respectively.  

This study demonstrated that the ELM model developed from 

UAV-based remote sensing image data has a great potential for 

LAI prediction of rice. 
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