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Analysis of cotton height spatial variability based on UAV-LiDAR 
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Abstract: The spatial variance of geometric information of farmland crops is the basis of field management.  Therefore, it has 
significance for variable mechanical operations to accurately obtain the spatial difference of crop height information.  In the 
present study, UAV-LiDAR was used to collect data at the cotton planting base in Korla to estimate the spatial differences in 
cotton plant height.  The crop height was estimated using the average height of a certain number of highest points per m2 point 
cloud.  First, the plant heights of different spatial locations in the field were collected manually and compared with the system 
measurement.  The results showed that the maximum relative error of sampling was 12.73%, the error value was 3.48 cm, and 
the height map was visualized.  In order to explain the height change of plant height in the direction of crop rows and vertical 
crop rows, this paper used the coefficient of variation as a measure.  The results showed that the plant height variation 
coefficient in the crop row direction ranged from 0.54-1.04 and the average variation coefficient was 0.73; perpendicular to the 
crop row direction, the crop height variation coefficient range was 0.06-1.27 and the average variation coefficient was 0.58.  
The spatial difference information was characterized by the coefficient of variation of the geometrical features of the crop 
height.  This work can provide information for cotton field variable operation machinery and provide reference for the 
extraction of field crop geometric information. 
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1  Introduction  

Crop height information is an important basis for adjusting 
farmland management measures.  Farmland management includes 
the regulation of soil moisture, nutrition, pests, etc.  These 
conditions will affect the growth of crops, mainly reflected by 
changes in crop morphological characteristics[1], physical 
characteristics[2] and physiological characteristics[3,4].  The crop 
heights are different in different areas of the cotton field, so the 
acquisition of crop characteristics information has become the 
information base for adjusting farmland management strategies. 

Remote sensing is a non-intrusive detection technology, and a 
large number of scholars have conducted researches on different 
traits of different crops[5-7].  Spectral technology can be used to 
reflect spectrum data to estimate crop growth, especially to obtain 
physiological and physical characteristics such as crop leaf 
moisture content[8], chlorophyll content[9], nitrogen 
concentration[10], and height.  Similarly, thermal imaging 
technology can detect the heat emitted by objects.  The 
temperature of the crop canopy can be detected by thermal imaging, 
and it has developed into an important indicator to reflect the 
moisture content of crops[11].  The LiDAR (Light Detect and 
ranging) sensor estimates the distance between the sensor and the 
target crop by recording the laser time of flight (TOF)[12].  The 
data output of LiDAR sensor can be used to reconstruct 3D point 
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clouds to obtain the morphological characteristics of crops.  The 
3D point cloud reconstructed by LiDAR sensor provides 
high-precision characterization of canopy volume and crop 
density[13]. 

LiDAR, as a new technology developed in the past ten years, 
has been proved to apply for the geometric information detection of 
crops.  It has the characteristics of high accuracy and little 
influence by light[14-16].  When LiDAR was early used in crop 
detection, LiDAR was carried on a ground-based mobile device, 
and the scanning path had to maintain a fixed distance from the 
tested crop.  Polo et al.[17] developed a LIDAR system mounted on 
a tractor platform to quickly and non-destructively estimate plant 
volume and leaf area characteristics.  In the same year, Rosell et 
al.[18] optimized the registration of crop data with the help of 
computer-aided design (CAD) software and demonstrated that the 
3D point cloud plant structure was consistent with the real structure, 
and the highest volume correlation coefficient was 0.976.  With 
the help of GNSS information 3D point cloud data, the local 
coordinate system is synchronized to the geographic coordinate 
system, so that the data collection does not need to maintain a fixed 
distance from the tree row, the point cloud data on both sides of the 
tree row can be accurately matched, and the processing has been 
greatly improved[19].  Colaço et al.[20] developed a method of 
collecting and analyzing point cloud data containing geographic 
information, which can realize the morphological characteristics of 
crops in large-scale orange orchard environments and realize the 
visualization of the spatial variability of features.  With the 
development of unmanned aerial vehicle technology, the LiDAR 
system using drones as the platform has been rapidly applied due to 
the characteristics of detection without the limitation of line 
distance, soil moisture and easy control.  It is worth noting that 
UAV measurement methods also have limitations.  For example, 
Lei et al.[21] studied the relationship between the position of the 
drone relative to the measured crop and the density of the crop.  
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The LiDAR measurement system mounted on the UAV improves 
the efficiency of information acquisition and the scale.  The 
amount of data also increased rapidly, including a large amount of 
point cloud data of farmland and the surrounding environment.  
Therefore, the extraction of crop characteristics in point cloud data 
has become the focus of research. 

Researches on plant morphological estimation can be classified 
according to the number of plants.  The phenotype of a single 
plant, the crops are mostly in the seedling stage with small planting 
density, and the point cloud data of a single plant can be extracted 
to estimate the plant morphological parameters.  Deep learning 
can be used to identify individual crops.  Jin et al.[22] compressed 
the corn plant point cloud into a depth map as a training set, used 
the Faster R-CNN (region-based convolutional neural network) 
model to learn the ability to detect corn stalks, and then mapped the 
3D points of the test set to be used as the seed point of the regional 
growth algorithm to detect the individual plant corn.  The results 
obtained by the measuring system and manual method to measure 
the height of corn has a good correlation (R2> 0.9).  More scholars 
focused on extracting geometric feature parameters from multiple 
point clouds[23-26].  Yuan et al. developed a phenotype 
measurement system for peanut canopy based on a bicycle platform 
and proposed a method for dividing a single row of peanut canopy 
according to extreme points and calculating the canopy height from 
the highest point of the canopy.  There is a strong correlation   
(R2 = 0.915) between the canopy height obtained by the system and 
the manually measured value.  The root mean square error is 
22.78 mm[27].  Ashapure et al.[28] extracted the geometric 
characteristics of crop growth by dividing the point cloud data of 
cotton fields into 1 square meter grids.  By comparing the 
differences in canopy height, coverage and canopy volume, it was 
proved that reducing farming could improve crop geometric 
parameters.  Colaço et al.[29] obtained the canopy height and 
volume of the orange garden through point cloud data, proving the 
spatial variability of the canopy geometry.  Among them, the 
coefficient of variation of the canopy volume was 30% to 40%, and 
the information can be used in agricultural machinery variable 
assignments.  In this paper, the method of obtaining geometric 
parameters of cotton plants from point cloud data in high-density 
cotton fields was studied, and the spatial differences in cotton plant 
heights were calculated.  Firstly, the location of the experiment 
and the growth of cotton plants were introduced.  Secondly, the 
point cloud data preprocessing method and the calculation method 
of cotton plant height were introduced.  Finally, the spatial 
difference of cotton plant height was counted and the difference 
map was drawn. 

2  Materials and methods 

2.1  Experimental site 
The climate of Korla, Xinjiang, China is a typical temperate 

continental arid climate.  The annual average temperature is 
around 11°C, and the average annual precipitation is less than    
60 mm.  It is suitable for cotton planting, with a large planting 
scale and a high degree of mechanization.  It is an important part 
of China's largest cotton producing area.  In this study, the 
scientific research base of the Plant Protection Institute of Xinjiang 
Academy of Agricultural Sciences (41°1'55''N, 85°48'18''E) in 
Korla was selected as our research area.  The measurement object 
is cotton (Xinluzhong66) in the peach-making period, with planting 
density of 15-18 plants/m2, 17-19 leaves, average plant height of 
cotton 50-55 cm, and leaf area index of 1.556.  The growth of 

cotton plants is shown in Figure 1. 

 
Figure 1  Cotton plants 

2.2  Data acquisition 
2.2.1  Hardware equipment 

A three-dimensional lidar crop phenotype detection system 
(abbreviated as a detection system) was used to collect geometric 
information of cotton plants.  The detection system is a portable 
lidar measurement system, which mainly integrates a 16-line laser 
scanner, GNSS using post-processing technology, inertial 
navigation system INS and control memory.  The main parameters 
of the system are shown in Table 1.  The system is mounted on 
the plant protection UAV platform (DJI MG-1P).  To ensure the 
measurement accuracy, the UAV platform needs to fly around to 
make the GNSS accuracy converge.  The stationary state of the 
crop has changed by the wind field of UAV, causing measurement 
errors.  In order to eliminate the influence of the wind field, the 
flying height of the UAV platform in this paper is not less than 9m. 

 

Table 1  VLP-16 and SPAN-IGM-A1 parameters 

Sensor Specification Value 

Channels 16 

Measurement Range/m <100 

Range Accuracy/cm ±3 

Angular Resolution (Vertical)/(°) 2 

Angular Resolution (Horizontal)/(°) 0.1- 0.4 

Rotation Rate/Hz 5-20 

Velodyne 
VLP-16 

Weight/g 830 

Single point L1/L2(RMS)/m 1.2 

RTK (RMS) 1 cm+1 ppm 

GNSS Data Rates/Hz 20 

IMU Data Rates/Hz 200 

SPAN-IGM-A1

Weight/g 515 
 

The detection system is designed to efficiently obtain field 
phenotype data.  The 3D laser scanner can have a vertical angle 
resolution of 2°, a horizontal angle resolution of 0.1-0.4°, a vertical 
field of view of 30°, a horizontal field of view of 360°, a 
measurement frequency of 5-20 Hz, and a maximum measurement 
distance of 100 m.  RTK-GNSS can provide positioning data with 
an accuracy of 10 cm and a measurement frequency of 20 Hz. 
2.2.2  Field experiments 

The field data collection test time was August 15, 2019.  
During the data acquisition period, to avoid the interference of 
strong sunlight on LiDAR working temperature and signals in high 
latitudes, the test was selected in the evening, and the 
environmental wind degree was less than 0.87m/s.  The detection 
system was mounted on the UAV platform and travels at a uniform 
speed of 2m/s in the direction of the cotton ridge, and the vertical 
height from the ground was 9m.  The maximum value of the 
obtained point cloud data density was 13000 points/m2 and the 
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average value was 1681.94 points/m2.  The cotton plant height 
was divided into three gradients: high, medium, and low.  Three 
crops were randomly selected for each gradient, and the average 
value was obtained by manual measurement and comparison with 
the measurement data of the LiDAR system. 

2.3  Data Processing 
After acquiring the raw data of cotton fields in the field, the 

data processing and analysis were performed in matlab2019b (the 
math works Inc., Natic, MA, USA) software, the operating system 
platform is Ubuntu16.04, and the computer configuration is 
I9-9900k CPU 3.60 GHz 16GB RAM.  To extract the target field 
and the geometric parameters of the cotton plant from the original 
high-density point cloud data, the data analysis and processing 
program was mainly divided into three steps: original data 
preprocessing, target field block extraction and crop geometric 
parameter extraction. 
2.3.1  Data Pre-Processing 

Due to the raw point cloud data which containing a large 
number of three-dimensional points and existing of data 
redundancy, the detection accuracy of crops was reduced and the 
data processing time was increased.  Outliers will cause a 
decrease in data processing accuracy.  This article preprocesses 
the original data by down-sampling and KD-Tree denoising. 

1) Point cloud thinning.  In order to reduce redundant data 
and keep the field sample data independent and identically 
distributed with the original data, this article uses random sampling 
method[30].  The point clouds data were divided into multiple 
small cube grids, and a point is randomly selected in each grid as 
the down-sampling value.  The number of points was reduced 
from 12.67 million points to 9.32 million points, and the data 
compression ratio was 26.44%. 

2) Denoising the point cloud.  In view of the random 
distribution of cotton field point cloud data, dense data, and large 
altitude changes, a method based on average neighborhood distance 
was selected.  Constructed a k-d tree, established a point cloud 
topological relationship in the target area, calculate the average 
distance d and standard deviation σ of each point from its nearest 
neighbor point, and the neighbor parameter kd.  If d exceeds the 
set threshold dmax, the point is determined as a noise point and 
deleted.  In this paper, the k-d tree algorithm parameter value is  
kd =10, and the threshold value dmax=12. 
2.3.2  Target field extraction 

The original file of point cloud data is in LAS format, which 
contains objects such as crops, buildings and trees.  In order to 
extract crop point clouds, the original point clouds are cropped.   

1) Reading the LAS file.   
The point cloud coordinate values were the representation in 

the Gaussian plane coordinate system.  The location of the test 
field has a large coordinate value in Gaussian coordinate system.  
In order to improve the calculation speed and accuracy, the point 
cloud coordinates were subtracted from the point cloud center of 
gravity coordinates.  The center of gravity of a point cloud was a 
3D point coordinate, and the coordinate value is the average value 
of all points in the point cloud.  In this paper, the barycenter 
coordinates of point cloud was (400640.77 m, 4622524.04 m, 
840.11 m).   

2) Extracting target point cloud.   
Usually the direction of the crop row in the point cloud was 

different from the direction of the graphic coordinate axis.  
Therefore, it is necessary to eliminate the angle by rotating the 
point cloud.  Then, Setting the value range (x_min x_max), 

(y_min y_max), (z_min z_max) on the coordinate axis to complete 
the cutting.  The field coordinate system is established using the 
principal component analysis method (PCA)[31]. 
2.3.3  Cotton plant height map 

Plant height can be defined as the distance from the ground to 
the top of the canopy.  In the measurement process using laser 
sensors, due to various factors such as different environments, 
ground undulations and crop growth stages, the method of 
extracting crops from point cloud data is very different.  The data 
used in this paper has small local fluctuations in the ground and 
dense crop point clouds.  At the same time, because the 
probability of the laser beam of the sensor passing through the crop 
canopy was small, the number of ground point clouds acquired was 
small.  Under the condition of high planting density, it is difficult 
to extract the point cloud of single crop.  In this paper, the point 
cloud was divided into regions, and the regional height was used to 
represent the height of crop groups.  This is more conducive to the 
application in variable machines.  Due to differences in crop 
canopy structure, the highest point in the point cloud is not always 
the best representative of the crop height measured in the field.  
Therefore, for each point cloud grid area, the highest 5 points were 
selected to average to represented the height of crop groups in this 
region. 
2.3.4  Coefficient of variation 

The coefficient of variation of the plant height in cotton fields 
can be analyzed from the crop row and its vertical direction from 
two dimensions.  In this paper, the point cloud data is projected 
along the crop row at 1m intervals, and the data is projected along 
the crop row, and the plant height is calculated the coefficient of 
variation in this direction, the sample coefficient of variation (CV) 
is defined as the ratio of the standard deviation to the mean: 

scv
x

=  

where, s is the sample standard deviation and x  is the sample 
mean.  It shows the variability relative to the mean defined by the 
standard deviation. 

3  Results and discussion 
3.1  Cotton plant height measurement results and analysis 

To determine the accuracy of the measured data in the 
experiment, A comparison between the LiDAR analysis results of 
the cotton canopy average height and the manual measurement 
values are shown in Table 2.  The results clearly show that the 
system measurement values were lower than the manual 
measurement values, the maximum relative error of sampling is 
12.82%, and the corresponding maximum sampling error is    
3.48 cm.  The main reason for this result was that the sampling 
resolution of the laser sensor was 3 cm.  When the laser sensor 
measured the height of the crop, the size of the branches and leaves 
at the top of the crop were small, which caused the measurement 
error of the sensor to increasing, and even the top of the crop 
cannot be measured.  In manual measurement, the position of the 
top of the crop can been easily judged, so the manual measurement 
of cotton plant height is greater than the system measurement value.  
The measurement accuracy of the system in this article was high, 
not only because of the high accuracy of sensor performance 
indicators, but also the following parameters were used in the 
measurement method.  Due to the low setting speed of the drone, 
the average horizontal moving speed was 2 m/s, and the flying 
distance of the crop height range was 7.5~8 m, which is only 1/11 
of the sensor measurement range, so the relative error of the system 
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measurement accuracy was low[32]. 
 

Table 2  System measurement and manual measurement of 
cotton plant height 

Crop 
numbers 

Manual 
measurement/cm 

System 
measurement/cm 

Relative error 
/% 

h1 27.33±3.42 23.85±5.55 –12.73 

h2 36.29±4.85 33.29±6.65 –8.26 

h3 23.84±2.55 22.92±5.39 –3.86 
Note: Data were expressed by means ± standard deviation. 

 
Figure 2  Cotton height map 

 

3.2  Cotton groups height coefficient of variation 
It has significant to reflect the height information of the cotton 

plant with respect to the geographical position and evaluate the 
height change, which can provide various operation information for 
agricultural machinery.  This paper chooses the coefficient of 
variation to measure the change of crop groups height in the crop 
row or perpendicular to the crop row.  Before statistical analysis, 
the point cloud was divided into a regional grid with a side of 2 m.  
considers that the height of the point cloud in the grid is equivalent 
to the height of a group crops.  The change of the height 
coefficient of variation along the crop row direction is shown in 
Figure 3. 

 
Figure 3  Distribution of height variation coefficient along the row 

direction (X) 
 

Along the direction of crop rows, the coefficient of variation 
(CV) of height is between 0.54-1.04, the average coefficient of 
variation of height is 0.73, and the abnormal value of the coefficient 
of variation occurs near X equal to 50.   

The length of the cotton field is about 220m and the length of 
the sensor data collection area is 40m.  There are few data 
sampling points in the non-test section of the field, and the degree of 
dispersion is too large, resulting in an abnormal coefficient of 
variation.  The variation of the height coefficient of variation 
perpendicular to the crop row direction is shown in Figure 4.  The 
crop height variation coefficient ranges from 0.06-1.27, and the 

average variation coefficient is 0.58.  Comparing the coefficient of 
variation in the two directions, it can be concluded that the 
coefficient of variation of the geometric characteristics of the crop 
height shows a difference in the geographical location, and the 
coefficient of variation of the height along the crop row direction is 
larger.  The results show that the height of the plant along the 
direction of the crop row may become the reference information for 
variable mechanical operations in the field. 

 
Figure 4  Vertical line direction (Y) height variation coefficient 

distribution diagram 

4  Conclusions 

Differential information needed to be provided during cotton 
field mechanical variable operations.  In order to obtain 
differential operation information, this paper studies the differences 
in the spatial distribution of cotton field plant heights.   

1) This paper used the UAV-LiDAR detection system to obtain 
the point cloud data of the target cotton field.  Stepped such as 
data preprocessing, extraction of target fields, calculation of crop 
height and spatial variability calculation, the spatial variability of 
cotton plant height with and perpendicular to the row direction of 
the crop was obtained. 

2) The maximum relative error of the measured value of the 
UAV-LiDAR detection system was 12.73%, and the corresponding 
maximum error is 3.48 cm. 

3) Along the direction of crop rows, the coefficient of variation 
(CV) of cotton plant height at the ranged between 0.54 and 1.04, 
and the average coefficient of variation of height was 0.73. 

The results were shown that the height of the plant along the 
direction of the crop row may become the reference information for 
variable mechanical operations in the field.  The research work of 
this article can provide reference for the information acquisition 
method of field variable machinery.  Future work will 
automatically extract the point cloud of cotton field plants and 
import the generated spatial difference parameters into the map for 
variable mechanical access. 
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