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Abstract: This paper addresses the multiple farming task assignment for agricultural UAVs by presenting a decentralized 
auction algorithm, where computation and information are distributed among multiple parallel processing units (UAVs).  The 
scheme iterates between bundle construction phase and two conflict resolution phases, and then converges to a task allocation 
and route plan simultaneously.  In the bundle construction stage, each UAV groups the tasks with commonalities by 
considering its own capacities of flight endurance, weight load, battery, data storage, etc.  In the following conflict resolution 
stages, the winning UAVs for tasks are determined by the information exchanged between UAVs.  Later, the proposed 
algorithm is shown to have a low demand for communication and is proved to be able to achieve 50% optimality.  Finally, an 
application of collecting the data of ground sensor nodes (including moving nodes) is used to assess the performance of the 
proposed scheme.  Numerical experiments confirm superior convergence properties and performance of the proposed 
algorithm when compared with existing task-allocation algorithms. 
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1  Introduction  

Unmanned aerial vehicles have been developed and applied to 
perform farming tasks such as remote sensing[1], crop dusting[2], 
pesticide spraying[3,4], routine monitoring of crop plant health[5] and 
acquiring sensed data from ground sensor nodes[6-8].  Nevertheless, 
available agricultural UAVs are still limited by their payload and 
flight endurance.  For example, most mini fixed-wing airplanes or 
rotary-winged helicopters used for low altitude remote sensing in 
agriculture have short endurance[9], which is always less than an 
hour[10].  For a large area over hundreds of hectares, a UAV will 
take a long time to traverse all predefined waypoints and has to 
return back for new power from time to time.  Even for a larger 
payload capacity and longer flight endurance spraying UAV, 
limited pesticide loads also impose restrictions on its widely use.  
To avoid the unnecessary time waste in turning-around for power 
and reduce the total task completion time, more UAVs may be 
needed to cover a large farm field. 

Although we can take an advantage of the high efficiency of 
multi UAVs in doing agricultural tasks, the complexity for global 
computation and information of the task assignment problem 
among multiple UAVs can be very high.  One difficulty lies in the 
dependency between task assignment and path planning.  Due to 
the limitation in payload and flight endurance of agricultural UAVs, 
the cost to complete a task is dependent on the path.  Thus, route 
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plan should be considered when tasks are assigned.  The general 
way to solve the task allocation and path planning problem is 
allocate-then-plan schemes, which assigns the tasks first, then plans 
the route for each UAV.  However, the allocate-then-plan schemes 
decouple the allocation and route planning problems, do not 
consider the complete solution space and may find inefficient 
solutions. 

In order to deal with task allocation and route planning 
simultaneously, most techniques require a robust central processor 
that handles all computation and information in the system.  
However in agriculture, a robust central processor may not always 
be available at the field site, thus gives rise to the need for 
decentralized solutions, where computation and information are 
distributed among multiple parallel processing units (corresponding 
to the UAVs).  One such approach is the auction algorithm which 
allows UAVs to bid for the tasks according to their states and 
capabilities[1].   

In auction, the traditional way of computing the winner is to 
have a central system acting as the auctioneer to receive and 
evaluate each bid among the UAVs[11].  A winner is selected after 
all of the bids are collected by the auctioneer.  Some approaches 
choose one of the bidders to act as the auctioneer[12].  Since the 
UAVs may fly away from the predefined auctioneer, especially 
when doing an agricultural mission in a large farm field, the above 
approaches can’t be used for mobile bidders such like UAVs 
because not all of the UAVs can send their bids to the auctioneer 
directly.  We address this challenge by means of a distributed 
auction algorithm, where the UAVs are able to bid for the tasks 
according to their local information and resolve the conflict by 
themselves, no central processor or auctioneer are needed. 

In agriculture, each UAV has to take more than one task along 
its flight route.  As the cost or the score for a task is dependent on 
the route, thus the cost or the score for the task is also dependent on 
the other tasks this UAV takes.  The dependency between tasks 
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makes the task assignment problem more complicated.  In many 
cases, this is done by running sequential auctions and awarding a 
single task at a time until there are no remaining tasks left to 
assign[13].  However, sequential auction sacrifices the total benefit 
because it lacks global view.  In order to improve the total benefit, 
combinational auction was developed to allow UAVs to bid on task 
groups rather than the individual tasks.  Nevertheless, difficulties 
can arise in the computational cost for enumerating all possible task 
combinations and determining the winner among these 
combinations.  The winner determination has been shown to be 
NP (Nondeterminism Polynomial) hard problem. 

Another property of task allocation problem among 
agricultural UAVs is the limited capabilities of UAVs due to its 
flight endurance and weight load.  This limitation should be 
considered in allocation, especially when taking tasks in a large 
farmland. 

In this paper, we developed a distributed auction to solve the 
multi-task allocation problem among multi UAVs in agriculture.  
Based on the auction algorithms as in [14-16], our approach groups 
tasks that have commonalities, enables multiple tasks to be 
assigned to a UAV and multiple conflicts to be resolved in parallel, 
thus enormously accelerates the convergence time of multi-task 
allocation.  At the same time, the dependency between 
agricultural tasks and the capabilities of agricultural UAVs are 
taken into account when each UAV groups similar tasks.  It is 
worthy to note that the proposed algorithm could perform the tasks 
allocation and route plan simultaneously, thus achieve better 
performance than those allocate-then-plan schemes. 

2  Problem formation 

Assume there are N  UAVs with integrated wireless 
communication capabilities and M  tasks.  The tasks can be the 
predefined remote sensing waypoints, the ground sensor nodes with 
data to be collected or the land parcels where pesticides need to be 
sprayed.  The global objective function is assumed to maximize 
the sum of rewards of performing the tasks, or to minimize the total 
costs of executing the tasks.  The minimization function can be 
used for the situation like minimizing total travel distance or 
minimizing tasks completion time.  As maximization problem and 
minimization problem can be mutually converted, we just consider 
the maximization problem in this paper.  We use uij to denote the 
reward when UAV i executing task j.  It is also worthy to note that 
uij always relates with path route pi (the flight route of UAV i).  In 
order to avoid UAVs collision, it assumes that each task is assigned 
to no more than one UAV.  The task assignment problem then can 
be written as the following integer program 
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where, xij =1 means task j is assigned to UAV i, I is the UAVs’ set 
and J is the tasks’ set.  Formula (2a) means one task can’t be 
allocated to more than one UAV.  Formula (2b) means each UAV 
is limited by its available resources (endurance, fuel or battery 
consumption, pesticide loads, memory storage capacity, etc.), 

where cij(pi) denotes the resource consumption for UAV i to 
perform task j along the path route pi, and Ci denotes the 
capability of UAV i.   
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denotes the cardinality of a list.  Equation (3) 

expresses how a UAV estimate the reward of a task.  When adding 
a new task to its task set, the UAV will insert it in an optimal 
position along the flight route which maximizing its total reward.  
In the paper, we assume that the reward of performing a task is 
characterized by a non-decreasing, submodular function[17,18].  
Specially, it satisfies the follow conditions 
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Note that if more tasks are assigned to UAV i , it will gain 
more utility.  However, if a new task k  is added to the task set, 
the reward of any original task does not increase.  Though not all 
of the utility functions of interest in task allocation satisfy 
submodular, but in agriculture, this assumption on utility function 
is general enough to capture the majority applications [14].  For 
example, when a UAV take remote sensing for a particular area, 
with the pictures and data increasing, the incremental utility may be 
tiny by adding new sensing pictures at the same block.   
3  Distributed auction algorithm 

The distributed auction algorithm for multi-task allocation 
among multi-UAV includes three phases.  The first phase is task 
combination (bundle) construction and route planning, this phase is 
executed locally by each UAV.  In the second and third phase, 
UAVs communicate to resolve conflicts. 

A. Phase 1 
Phase 1 describes how the task combination (bundle) b and 

path route p are locally built by each UAV.  A UAV compares the 
reward for adding a new task into the current bundle and current 
path with the current winning bid list’s y value for that task.  If the 
reward is greater than the current winning bid, the UAV assigns 
itself the task. 

 

Table 1  Phase 1 of the distributed auction algorithm for 
multi-task allocation among multi-UAV 
Phase 1: Build bundle and plan route for UAV i 
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Where the bundle bi lists the tasks in the order which they were 
added sequentially, whereas, the path pi is the order in which the 
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tasks are performed.  Except for bi and pi, each UAV carries the 
other two vectors: a winning bid list yi and winning UAVs list zi. 
F(pi, bi) is the function to calculate the resource consumption of 
UAV when completing current bundle bi along the path route pi.  
In agriculture, this could be the fuel consumption, battery 
consumption, pesticide consumption, etc.  The resource capacity 
of UAV i is assumed to be Ci.  During phase 1, each UAV 
continuously adds tasks to its bundle until it is incapable of adding 
any other task.  By logically grouping tasks with commonalities, 
our algorithm may achieve faster converge speed than its sequential 
counterparts and have better performance in the assignment. 

B. Phase 2  
 

Table 2  Phase 2 of the distributed auction algorithm for 
multi-task allocation among multi-UAV 
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In phase 2, UAVs communicate to resolve conflicts.  After 
updating the winning UAV list iz and current task price yi (line 3-6), 
each UAV i loses its assignment if it finds that it is outbid by 
other UAVs for the task it had selected.  Line 7 is for UAV i to 
find the first task in its bundle which was thought to assign to 
itself but is outbid by other UAVs.  Where bi,n denotes the nth 
entry of bundle bi.  The reason to reset the tasks and the 
corresponding winning bids and winning UAVs (line 8-14) which 
were added after bi,n is that, in phase 1, UAVs add tasks to their 
bundle based on their current assigned task set, if a UAV is 
outbid for a task and, thus, releases it, then the estimated reward 
for the tasks added to the bundle after this task are no longer valid.  
Accordingly, all of the following winning tasks of UAV i need 
to be reset (Line 8-13) and all of the following tasks need to be 
released (line 14). 

C. Phase 3 
Because some tasks may be released in phase 2, the bids list yi, 

which is sent by UAV i at the beginning of phase 2, may be invalid.  
Suppose a UAV is able to release tasks without another UAV 
selecting it (the invalid bids may prevent other UAVs to choose 
those tasks), a simple application of the maximum bids update on 
the winning bids list yi will no longer converge to the appropriate 
values since then, the maximum bid observed might no longer be 
valid.  Therefore, Phase 3 is needed.  Line 3-8 is to find the 
invalid bids and reset them as zero.  Line 5 means UAV i think 
the winning UAV for task j is UAV k, but UAV k has released and 
reset task j in phase 2, thus the invalid winning bids yi,j should be 
reset.  Finally, all winning bids and winning UAVs are updated 
according to the most current information. 

After executing the third phase, the algorithm goes back to the 
first phase, and new tasks are added.  The algorithm iterates 
between Phases 1-3 until consensus is achieved, which means, for 
any UAV i I∈ , yi and zi do not change over time. 

 

Table 3  Phase 3 of the distributed auction algorithm for 
multi-task allocation among multi-UAV 

Phase 3: Conflict ResolutionⅡfor UAV i 
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It is worthy to note that the algorithm is able to outbid earlier 
allocated tasks in the conflict resolution stage, which helps provide 
better assignments.  Furthermore, by implementing our auction 
algorithm, each UAV can not only get tasks assigned, but also 
complete the route planning to execute the tasks.   

Figure 1 shows the communication protocol for the distributed 
auction.  Only two agents are depicted for clarity.  At the 
beginning of each iteration, the most currently information of the 
tasks is achieved and updated.  This process is necessary in case 
new tasks add in or the states of some tasks change.  Note that the 
loop will continue to execute until leads to a convergence.  The 
convergence property is discussed in the next section.  

 

Figure 1  Communication protocol 

4  Convergence and performance guarantee 

In this section, the Centralized Sequential Greedy Algorithm 
(CSGA)[15] is introduced in this section to help prove the 
convergence and performance of our algorithm.  The CSGA is 
shown as follows. 
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Table 4  Centralized Sequential Greedy Algorithm 
Centralized Sequential Greedy Algorithm 
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Note that the superscript (n) denotes the nth step of the 
algorithm.  CSGA sequentially finds a sequence of UAV-task 
pairs that provide the largest rewards given prior selections.  

Where ( )
,
n

i ju  is calculated according to equation (3). 

Our algorithm can be proved to converge to the same results as 
CSGA.  The proving method is similar to the convergence proof 
of CBBA algorithm in [15].  Given the limited space available 
here，refer to[15] for more details.   

 Next we will prove CSGA can achieve at least 50% 
optimality, which means, our distributed auction algorithm can also 
guarantee 50% optimality as it has the same performance with 
CSGA. 

Lemma 1: The CSGA scheme can achieve 50% optimality. 
Proof: We prove it through induction.  Let P denote the 

original problem with N unallocated tasks.  We define P′ as a new 
problem with N–1 tasks left, assuming the first task j1 has already 
been scheduled by CSGA algorithm.  In other words, we can 
consider CSGA as scheduling task j1 to UAV i first.  Then we run 
CSGA on problem P′ recursively.  We use U 

P
CSGA to denote the 

reward gained by CSGA algorithm on problem P, and U 
P
OPT to 

denote the reward gained by the optimal solution.  Clearly, we 
have the next equation based on the definition of problem P′ 

1[{ }]P PU U U j′= +CSGA CSGA                (4) 

Next we will show that 12 [{ }]P PU U U j′≤ +CSGA CSGA .  Let 
b1,b2,b3,…bM be the optimal scheduling for problem P, where bi 
represents the tasks set allocated to UAV i under optimal 
scheduling.  We next have two cases to study: 

Case 1: j1∈bi.  Since we assume that j1 is also scheduled to 
UAV i by CSGA, it indicates that the scheduling of j1 by CSGA is 
optimal.  Thus, 1[{ }]P PU U U j′= +OPT OPT  is true based on the 
definition of P and P′. 

Case 2: 1 ij ∉b .  we can modify the optimal schedule by 
rescheduling j1 to UAV i.  All other tasks still remain to the same 
scheduling.  Obviously, this is a possible allocation for P′.  
Based on the submodularity of utility function and the greedy 
manner of CSGA, we can guarantee that the loss resulted from 
removing j1 is at most U[{j1}].  Thus, we have 

1 1[{ }] [{ }]P PU U j U U j′− ≤ +OPT OPT , then get 

12 [{ }]P PU U U j′≤ +OPT OPT . 

Therefore, 12 [{ }]P PU U U j′≤ +OPT OPT  applies for both cases.  
Finally, the proof can be finished by induction on P′.  Thus, 

1 12 [{ }] 2 2 [{ }] 2P P P PU U U j U U j U′ ′≤ + < + =OPT OPT CSGA CSGA    (5) 

This finishes the proof. 

5  Communication and computational cost issues 

In this work, we have assumed that all-to-all communications 
are available in order for the auction to take place.  Actually 
all-to-all communications are not strictly required, because in the 
auction rounds it is sufficient to establish a communication ring.  
Bandwidth restrictions are not significant, as the amount of 
information exchanged is not a critical issue for our protocol.  
Considering there are M tasks to be allocated among N UAVs.  
The parameters need to transmit in phase 2 and phase 3 are 

,1 ,2 ,[ , ,... ],( )i i i i My y y i= ∀ ∈y I and ,1 ,2 ,[ , ,... ],( )i i i i Mz z z i= ∀ ∈z I .  
Each yi,j and zi,j is described by a floating point number.  
Assuming 4 bytes per number, a total of 4×N×M×2 bytes are sent 
in phase 2 and phase 3 during each iteration.  Note that our 
auction will converge within M iterations, thus the maximum 
amount of data need to transmit is 8M2N bytes.  As an example, 
for an assignment of 30 tasks among 5 UAVs, a maximal amount 
of 36 kilobytes for the whole auction process need to be sent. 

As to computational cost, we underline that in a distributed 
approach such as the one we propose, each UAV just need to carry 
the computation only for its share.  Whereas in a centralized 
approach, the central processor needs to compute a complete 
solution, the cost must be multiplied by the number of UAVs or 
multiplied by the number of tasks.   

6  Algorithm performance 

In this section we implemented a series of experiments to 
validate the proposed distributed auction algorithm.  A 
time-discounted reward function as followed was assumed in this 
section: 

( )j
ii iτ

i j jS λ c= ∑ pp                  (6) 

where, λj<1 was the discounting factor for task j; τ 
j
i(pi) was the 

estimated time UAV i  took to arrive at task location j along the 
path pi, and cj was the reward of performing task j.  The 
time-discounted reward can model the planning of service routes in 
which satisfaction of client diminishes with time.  In agriculture, 
the time-discounted reward is suitable for many cases.  One 
example is pesticide spraying.  The earlier the pesticide can be 
sprayed, the better the pests can be controlled.  Another example 
is data collecting from ground sensor nodes.  Assume the sensor 
nodes have limited storage but carrying frequently sampling tasks 
required by some kind of application.  Thus after some time’s 
sampling, the data is about to overflow if wasn’t collected timely.  
Therefore, the time-discounted function can properly model the 
reward of data collecting tasks from ground sensor nodes.  In this 
section, we assumed the sensor nodes were randomly placed on a 
8000 m×8000 m field with two classes of sampling requirements.  
The first class sampling data had an arrival rate of 32 kbps, and the 
second class sampling data could be mapped to video services, 
such as the widely known Quarter Common Intermediate Format 
(QCIF) [19], having an arrival rate of 128 kbps.  We assumed all 
the sensor nodes had their storage being filled up with data, 
therefore, the new arrived data would overflow if the old data 
wasn’t being collected timely.  In this section, the parameters 
λ=0.95 and cj ≡1 were assumed and the UAVs were considered as 
having a constant velocity of 60 km/h.  It was supposed that each 
UAV knew its own position and the positions of ground sensor 
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nodes correctly.   
Figure 2 illustrated the sensor nodes placement and movement 

during one simulation.  There were 16 randomly placed nodes, the 
cyan square represented the first class sensor nodes which had an 
arrival rate of 32 kbps and the purple red diamond represented the 
second class sensor nodes with an arrival rate of 128 kbps data.  
The black triangle was used to denote the start point where the 
place all UAVs began their service.  In order to illustrate the 
robustness of our algorithm towards tasks movement, we assumed 
there were two nodes moving after the UAVs began to collect data.  
Such kind of cases were suitable for collecting the data from the 
sensors carried by livestock[20-21].   

When there was just one UAV, the path was planned according 
to travelling salesman problem (TSP) algorithm[22].  Figure 3 
showed the flight route of single UAV. 

 

Figure 2  Sensor nodes placement and movement 

 

Figure 3  Single UAV’s service route 
 

Figure 4 and Figure 5 showed the tasks assignment and   
flight routes generated by the proposed distributed auction 
algorithm when there were two UAVs available.  Figure 4 was for 
static sensor nodes and Figure 5 showed the changed routes when 
two sensor nodes moved.  It can be seen that the UAVs could 
adjust their routes and even switch their tasks according to the  
new locations of the nodes.  Note that the total task completion 
time represented the time that all UAVs finishing their tasks.  As 
we considered they began their service at the same time, the   
total task completion time was actually the maximal one among all 
UAVs’ task completion time.  Meanwhile, the total flight  
distance represented the summation of the travel distance of all 
UAVs. 

Figure 6 and Figure 7 showed the tasks assignment and the 
path routes for three UAVs.  By comparing these two figures, we 
noted that the moving tasks may result in the big change to UAVs’ 
routes and task allocation, especially when the movements 
happened at the beginning of the flight.   

 

Figure 4  Two UAVs’ service routes 

 

Figure 5  Two UAVs’ service routes (with two moving nodes) 

 

Figure 6  Three UAVs’ service routes 

 

Figure 7  Three UAVs’ service routes (with two moving nodes) 
 

In Figure 3 to Figure 7, when the sensor nodes with larger data 
rate are not too far from the start point, UAVs would put those 
nodes in the priority queue.  Through the comparison between 
Figure 3, Figure 4 and Figure 6, we could see the time efficiency of 
multi-UAV in performing multiple tasks.  The advantage of 
multi-UAV to collect data could be clearly illustrated in Figure 8.  
The data overflow due to delay was the worst if just one UAV was 
available, and three UAVs could greatly help decrease the 
overflow.   
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Figure 8  Sensor nodes data overflow 
 

Next, Monte-Carlo simulations were carried to assess the 
performance of the proposed distributed auction algorithm in terms 
of average travel distance, average task completion time, average 
data overflow and average convergence time, as the number of 
tasks increased.  The performance was the average of 500 
simulation times.   

As the number of sensor nodes were increasing, the average 
travel distance, the average task completion time and the average 
data overflow all increased.  For a given number of sensor nodes, 
the average travel distances were almost the same for one, two 
UAVs or three UAVs.  Whereas, more UAVs would save time 
and help decrease the data overflow.   

In Figure 12, the convergence time was assessed for the 
proposed distributed auction algorithm and the centralized 
algorithm CSGA.  Since the CSGA algorithm assigned each task 
one at a time, the convergence time steps for CSGA was same as 
the number of sensor nodes.  For distributed auction, each UAV 
carried a bundle of tasks and bid for them, then multiple tasks could 
be assigned to a UAV and multiple conflicts could be resolved in 
parallel, thus achieved acceleration in its convergence time.   

 

Figure 9  Total distance traveled to accomplish tasks 

 

Figure 10  Average task completion time 

 

Figure 11  Average data overflow due to time delay 

 

Figure 12  Convergence time steps 

7  Conclusions 
A distributed auction algorithm was proposed for multiple 

farming task allocation and route planning among multiple UAVs.  
The algorithm is capable of taking into account the characteristics 
of different farming tasks (such as moving tasks, tasks with 
different priority, etc.), and is capable of taking into account the 
limitations of different agricultural UAVs (such as flight endurance, 
weight load, battery capacity, data storage capacity, etc.).   

By grouping similar tasks in the bundle construction stage, our 
algorithm converged faster than its sequential counterparts and had 
good performance in the assignment since they can logically group 
tasks that have commonalities.  Furthermore, the algorithm was 
able to outbid earlier allocated tasks in the conflict resolution stage, 
which helps provide better assignments.   

Moreover, the proposed algorithm simultaneously assigned the 
tasks and planned the flight route.  By considering both problems 
together, our algorithm could achieve better performance than other 
allocate-then-plan schemes.  The performance of our scheme was 
proved to be at least 50% optimality. 

However, there are some specific constraints that haven’t been 
taken into account in the algorithm.  For example, not all regions 
are suitable for takeoff or landing with aerial robots.  The service 
trajectory must ensure starting and ending points in places that 
fulfill some requirements, such as safety margins, sufficient space 
for operation and accessibility.  Other constraints include 
forbidden zones, turn angles and sensors.  Future work will focus 
on solving those problems and developing an integrated tool to 
conduct field experiments.  
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